

150W isolated DC-DC converter Wide input and regulated single output

Patent Protection RoHS

FEATURES

- Wide input voltage range: 180-435VDC
- High efficiency up to 89.5%
- Enhanced isolation, isolation voltage: 3kVAC
- Input under-voltage protection, output over-voltage, over-current, short-circuit protection, over-temperature protection
- Shell operating temperature range Tc: -40 $^{\circ}$ C to +105℃
- Industry standard 1/4-Brick package and pin-out
- Meet the EN62368 standard

VRF3D_QB-150WR3-N series of isolated 150W DC-DC converter products, with a wide 180-435VDC input voltage range. The efficiencies of up to 89.5%, isolation voltage 3000VAC, housing allowed operating temperature -40°C to +105°C, with input under-voltage protection, output over-voltage, over-current, short-circuit protection, over-temperature protection, widely used in industrial control, communication and other fields.

Selection	Guide														
O - #16 #1		Ctrl	Input V	•	0	utput	Full Load Efficiency®	Capacitive (Load (µF) Max.	Capacitive						
Certification	Part No.	Logic	Nominal (Range)	Max. ²	Voltage (VDC)	Current (mA) Max./Min.	(%)Min./Typ.		Load (µF)Min.						
	VRF3D05QB-150WR3-N	N			05	30000/0	87.5/89.5	10000	2000						
	VRF3D12QB-150WR3-N	N	270		12	12500/0	87.5/89.5	5000	1000						
	VRF3D24QB-150WR3-N	N		2/0 (180-435)							435	24	6250/0	87.5/89.5	2000
	VRF3D28QB-150WR3-N	N	(100 400)		28	5360/0	87/89	1500	470						
	VRF3D48QB-150WR3-N	N			48	3130/0	87.5/89.5	800	470						

③Efficiency is measured with nominal input voltage and rated output load.

Input Specifications						
Item	Operating Conditions		Min.	Тур.	Max.	Unit
Input Current (full load/no-load)		5V/12V/Output		621/30	635/50	
	Nominal input voltage	24V Output		621/7	635/15	mA
		28V Output		625/7	639/15	
		48V Output		621/7	635/15	
Reflected Ripple Current®	Nominal input voltage, 100% l		100	_		
Starting Voltage			-	-	180	VDC
Input Under-voltage Protection			155	165		VDC
Start-up Time	Nominal input voltage & constant resistance load		_	100	300	ms
Input Filter			C filter			
Hot Plug			Unavailable			
	Module open		Ctrl pin p	ulled -Vin or p	oulled low (0-	1.2VDC)
Ctrl [®]	Module shutdown	Ctrl pin open or TTL pulled high (3.5-12VDC)				
	Input current when turned off			5	10	mA
Note:						

①"P" indicates positive logic, "N" indicates negative logic;

² Exceeding the maximum input voltage may cause permanent damage;

①See reflected ripple current test circuit "Design Reference" Fig 7;

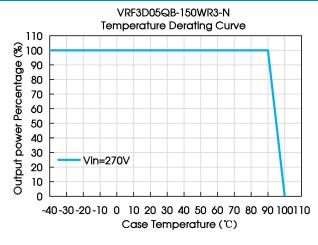
²The voltage of Ctrl pin is relative to input pin -Vin.

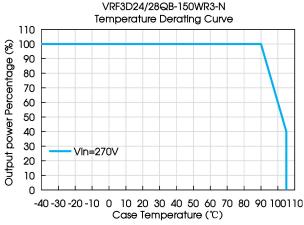
Output Specifications						
Item	Operating Conditions		Min.	Тур.	Max.	Unit
Output Voltage Accuracy	0%-100% load		-	±1	±3	
Line Regulation	Full load, the input voltage is fr	om low to high		±0.1	±0.5	
Load Regulation	0%-100% load		-	±0.5	±1	%
		5V/12V Output	-	±6	±10	76
Transient Response Deviation	25% load step change, input voltage range	24V/28V Output	-	±5	±8	
		48V Output	-	±3	±5	
Transient Recovery Time	Nominal input, 25% load step change			300	500	μs
Temperature Coefficient	Full load				±0.03	%/℃
		5V Output	-	150	200	mVp-p
	20MHz bandwidth, 5% - 100% load [®]	12V/124V Output		180	250	
Ripple & Noise [®]		28V Output		200	300	
		48V Output		250	350	
Over-Temperature Protection	Case Temperature®	1		110		°C
Trim			80		110	
Sense		-		105	%Vo	
Output Over-voltage Protection	Input voltage range	110	120	130		
Output Over-current Protection			110	135	180	%lo
Short-circuit Protection			Hico	cup, continuc	us, self-reco	very

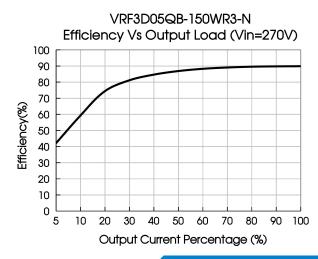
Note:

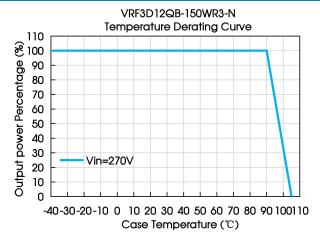
2) The case temperature test points are shown in "Design Reference" Fig. 8.

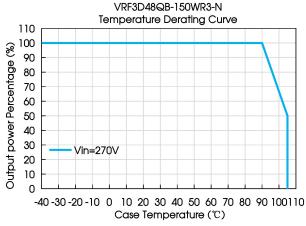
Item	Operating Conditions	Min.	Тур.	Max.	Unit	
Isolation		Input-Output	3000			
	Electric strength test for 1 minute with a leakage current of 10mA max.	Input-Case	1500			VAC
		Output-Case	1500			
Insulation Resistance	Input-output resistance at 500VDC		100	-	-	M Ω
Isolation Capacitance	Input-output capacitance at 100kHz/0.	-	600	1000	рF	
Shell Operating Temperature Range	See Fig. 1	-40		+105	°C	
Storage Temperature		-55		+125		
Storage Humidity	Non-condensing		5	-	95	%RH
Pin Soldering Resistance Temperature	Soldering spot is 1.5mm away from case	e for 10 seconds	_	-	+300	$^{\circ}$
Vibration		10-150H	lz, 5G, 0.75m	m. along X,\	and Z	
Switching Frequency [®]	PWM mode	-	250	-	kHz	
MTBF	MIL-HDBK-217F@25℃	500			k hours	

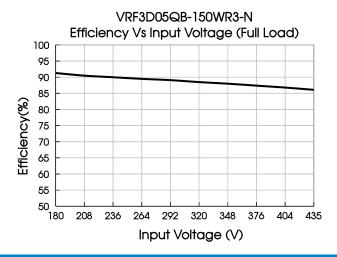

Mechanical Specifications				
Case Material	Black flame retardant and heat resistant plastic (UL94 V-0), aluminum alloy			
Dimensions	57.90 x 36.80 x 12.70 mm			
Weight	83.0g (Typ.)			
Cooling Method	Natural convection or forced air convection			

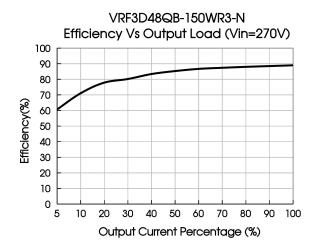

①Under 0% -5% load conditions, ripple & noise does not exceed 5%Vo. The "Reliable measurement" method is used for ripple and noise test, please refer to DC-DC Converter Application Notes for specific information;




Electro	magnetic (Compatibility (EM	IC)	
EMI	CE	CISPR32/EN55032	CLASS A (see Fig.6 for recommended circuit)	
EIVII	RE	CISPR32/EN55032	CLASS A (see Fig.6 for recommended circuit)	
	ESD	IEC/EN61000-4-2	Air ±8kV/Contact ±6kV (see Fig.4 for recommended circuit)	perf. Criteria B
	RS	IEC/EN61000-4-3	20V/m (see Fig.6 for recommended circuit)	perf. Criteria A
EMS	EFT	IEC/EN61000-4-4	100khz ±2kV (see Fig.6 for recommended circuit)	perf. Criteria B
	Surge	IEC/EN61000-4-5	line to line ±2kV (see Fig.6 for recommended circuit)	perf. Criteria B
	CS	IEC/EN61000-4-6	10 Vr.m.s (see Fig.6 for recommended circuit)	perf. Criteria A


Product Characteristic Curve





MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

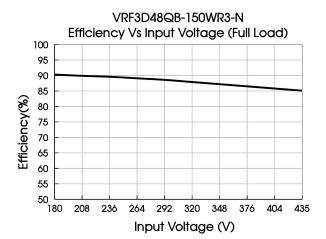
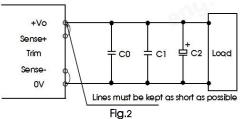



Fig.1

Remote Sense Application


1. Remote Sense Connection if not used

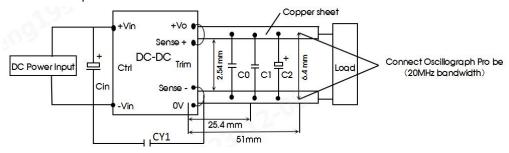
Note:

- (1) If the sense function is not used for remote regulation the user must connect the +Sense to +Vo and -Sense to 0V.
- (2) The connections between Sense lines and their respective power lines must be kept as short as possible, otherwise they may be picking up noise, interference and/or causing unstable operation of the power module.

2. Remote Sense Connection used for Compensation

Note:

- (1) Using remote sense with long wires may cause unstable output, please contact technical support if long wires must be used.
- (2) PCB-tracks or cables/wires for Remote Sense must be kept as short as possible. Twisted pair or shielded wires are suggested for remote compensation and must be kept as short as possible.
- (3) We recommend using adequate cross section for PCB-track layout and/or cables to connect the power supply module to the load in order to keep the voltage drop below 0.3V and to make sure the power supply's output voltage remains within the specified range.
- (4) Note that large wire impedance may cause oscillation of the output voltage and/or increased ripple. Consult technical support or factory for further advice of sense operation.


Design Reference

1. Typical application

If the EMC recommended circuit not being used, please be sure to connect an electrolytic capacitor of at least 100uF in parallel with the input terminal to suppress the surge voltage that may be generated at the input terminal, and a capacitor larger than the minimum capacitive load in parallel with the output terminal to stabilise the product output working condition.

All the DC/DC converters of this series are tested before delivery using the recommended circuit shown in Fig. 4.

Input and/or output ripple can be further reduced by appropriately increasing the input & output capacitor values Cin and Cout and/or by selecting capacitors with a low ESR (equivalent series resistance). Also make sure that the capacitance is not exceeding the specified max. capacitive load value of the product.

			FIQ.4													
Down No.	Cin	CO	C1	C2	CVI											
Part No.	Selection Guide	Selection Guide	Selection Guide	Selection Guide	CY1											
05V		22uF/25V	22uF/25V	2000uF/10V Solid-state capacitors												
12V				1000uF/35V Solid-state capacitors	1=F/400\/A C \/1											
24V	100uF/500V	OuF/500V		4.7E/100\/	47.15/100\/	4.7uE/100\/	4.7	4.7	4.7F/100\/	4.7E/100\/	4.7	4.7F/100\/	4.7F/100\/	47.15/100\/	470uF/50V Electrolytic capacitor	1nF/400VAC Y1 Safety capacitor
28V		4.7uF/100V	4.7uF/100V	470uF/50V Electrolytic capacitor	salely capacilor											
48V				470uF/100V Electrolytic capacitor												

2. Trim Function for Output Voltage Adjustment (open if unused)

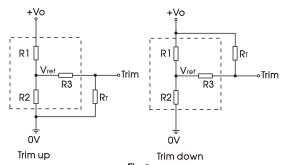


Fig.5
TRIM resistor connection (dashed line shows internal resistor network)

Calculation formula of Trim resistance:

up:
$$RT = \frac{aR_2}{R_2 - a} - R_3$$
 $a = \frac{Vref}{Vo' - Vref} \cdot R_1$
down: $RT = \frac{aR_1}{R_2 - a} - R_3$ $a = \frac{Vo' - Vref}{Vref} \cdot R_2$

Note:

a = Self-defined parameter, accurate to two decimal places; $R_T(k\,\Omega)$: Resistance of Trim.

Vo' is the actual output voltage;

Vref (VDC) indicates the reference voltage.

Vout (VDC)	R1(kΩ)	R2 (k Ω)	R3 (kΩ)	Vref (V)
05	8.7			1.25
12	10.91			2.5
24	24.77	2.87	11.5	2.5
28	29.41			2.5
48	52.28			2.5

3. EMC compliance circuit

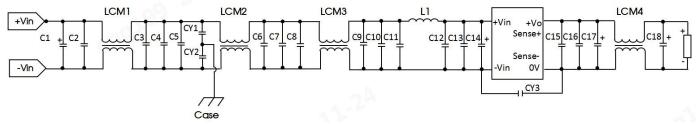
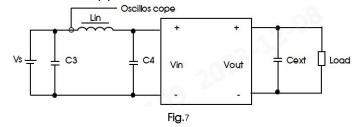
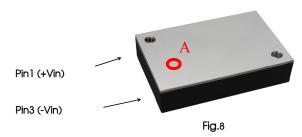



Fig.6

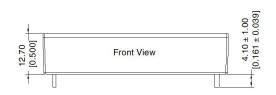
•	Parameter of	description:		
Components	5V/12V Output	24V/28V/48V Output		
C1	100uF/500V (Electr	olytic capacitor)		
C14	47uF/500V (Electro	olytic capacitor)		
C2, C3, C6, C9	2.2µF/450V (Filr	n capacitor)		
C4, C5, C7, C8, C10, C11, C12, C13	0.1µF/630V (Cera	mic capacitor)		
C15, C16	1µF/100V (Ceramic capacitor)			
C17, C18	330µF/63V (Electrolytic capacitor)			
LCM1	10mH, Recommended to use	MORNSUN P/N:FL2D-30-103B		
LCM2	1mH, Recommended to use	MORNSUN P/N:FL2D-50-102		
LCM3	7mH, Recommended to use	MORNSUN P/N:FL2D-30-702B		
LCM4	4uH (Nickel zinc), Recommended to use MORNSUN P/N:FL2D-D0-040			
L1	2.2uH/3A			
CY1, CY2	4.7nF/400VAC Y1 Safety capacitor			
CY3	1nF/400VAC Y1 Safety capacitor	NC		

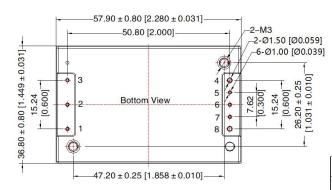

4. Reflected ripple current--test circuit

100uF/500V
22uH/4.7A
100uF/500V
See application circuit C0/C1/C2

5. Recommended scheme for thermal testing

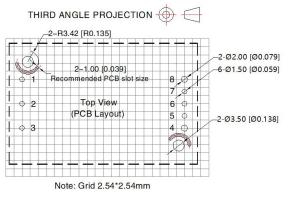
In the application process, the thermal design of the product can be evaluated with the product temperature derating curve; or by testing the temperature of point A in Fig.8 to determine the stable working range of the product, when the temperature of point A is lower than 105°C, it is the stable working range of the product.

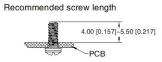



- 6. The products do not support parallel connection of their output
- 7. For additional information please refer to DC-DC converter application notes on www.mornsun-power.com

Dimensions and Recommended Layout

Note:


Unit: mm[inch]


Pin1, 2, 3, 5, 6, 7's diameter: 1.00 [0.039]

Pin4, 8's diameter: 1.50 [0.059]

Pin diameter tolerances: $\pm 0.10 [\pm 0.004]$ General tolerances: $\pm 0.50 [\pm 0.020]$

Mounting hole screwing torque: Max 0.4 N · m

Pin-Out						
Pin	Mark	Pin	Mark			
1	+Vin	5	Sense-			
2	Ctrl	6	Trim			
3	–Vin	7	Sense+			
4	OV	8	+Vo			

Note:

- 1. For additional information on Product Packaging please refer to www.mornsun-power.com. Packaging bag number:58010113;
- 2. The maximum capacitive load offered were tested at input voltage range and full load;
- Unless otherwise specified, parameters in this datasheet were measured under the conditions of Ta=25°C, humidity<75%RH with nominal input voltage and rated output load;
- 4. All index testing methods in this datasheet are based on company corporate standards;
- 5. We can provide product customization service, please contact our technicians directly for specific information;
- 6. Products are related to laws and regulations: see "Features" and "EMC";
- 7. Our products shall be classified according to ISO14001 and related environmental laws and regulations, and shall be handled by qualified units.

Mornsun Guangzhou Science & Technology Co., Ltd.

Address: No. 5, Kehui St. 1, Kehui Development Center, Science Ave., Guangzhou Science City, Huangpu District, Guangzhou, P. R. China Tel: 86-20-38601850 Fax: 86-20-38601272 E-mail: info@mornsun.cn www.mornsun-power.com