MORNSUN®

75W isolated DC-DC converter Wide input and regulated single output

FEATURES

- Wide input voltage range: 36-75 VDC
- High efficiency up to 93.5%
- I/O isolation test voltage 2250 VDC
- Operating ambient temperature range: -40 $^\circ \rm C$ to +100 $^\circ \rm C$
- Input under-voltage protection, output short circuit, over-current, over-voltage protection, over-temperature protection
- Industry standard package: 1/8 brick
- Meet EN62368 standards

VCF48_EBO-75W(F)R3-N series is a high-performance product specifically designed for a variety of communication power supply field. The DC-DC converters feature 75W output power with an wide 2:1 input voltage and feature efficiencies of up to 93,5%, input to output isolation is tested with 2250VDC and the converters safety operate ambient temperature of -40°C to +100°C, input under-voltage protection, output over-voltage, over-current, short-circuit protection, over-temperature protection. Meets EN62368 standards. They are ideally and widely used in applications such as industrial control, electric power, instruments and communications.

Selection Guide								
Certification	Part No. $^{\odot}$	Ctrl Logic®	Input Voltage (VDC)		Output		Full Load	Max.
			Nominal (Range)	Max.®	Voltage (VDC)	Current (A) Max./Min.	Efficiency®(%) Min./Typ.	Capacitive Load(µF)
EN/BS EN	VCF4803EBO-75W(F)R3-N	- N	48 (36-75)	75	3.3	22.73/0	88/90	9092
	VCF4805EBO-75W(F)R3-N				05	15.0/0	90.5/92.5	6000
	VCF4812EBO-75W(F)R3-N				12	6.25/0	91.5/93.5	2500
	VCF4824EBO-75W(F)R3-N				24	3.125/0	90/92	1250
	VCF4828EBO-75W(F)R3-N				28	2.679/0	89/91	1100
	VCF4848EBO-75W(F)R3-N				48	1.562/0	89/90.5	470

Notes:

①Use "F" suffix for heat sink mounting. We recommend to choose modules with a heat sink for enhanced heat dissipation and applications with extreme temperature requirements;

② "N" means negative logic;

 $\ensuremath{\textcircled{\texttt{3}}}$ Exceeding the maximum input voltage may cause permanent damage;

⁽⁴⁾Efficiency is measured at nominal input voltage and rated output load.

Item	Operating Conditions		Min.	Typ.	Max.	Unit
		3.3V		1736/20	1775/30	mA
		05V		1689/20	1726/30	
Innut Current (full lead (no lead)	Nominal input voltage	12V		1671/20	1707/30	
Input Current (full load / no-load)	_	24V		1698/20	1736/30	
		28V		1717/30	1755/50	
		48V		1725/20	1755/30	
Reflected Ripple Current	Nominal input voltage			30		
Surge Voltage	Continuous		0		80	
sulge volidge	Transient (100ms max.)		-0.7		100	
Start-up Voltage					36	VDC
Input Under-voltage Protection			26	29		
Start-up Time	Nominal input voltage & constant resistance	other			100	me
	load	48V			50	ms

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

Input Filter			Pi fi	lter		
Hot Plug			Unavailable			
Input Reverse Polarity Protection Unavaile		ilable				
	Module turn-on	Ctrl p	Ctrl pin pulled low to -Vin (0-1.2VDC)		VDC)	
Ctrl [®]	Module turn-off	Ctrl pin o	Ctrl pin open or pulled high (TTL 3.5-12VDC)			
	Input current when switched off		3	10	mA	
Ctrl Start-up Delay Time			30	50	ms	
Note: 1) The Ctrl pin voltage is referenced	Note: ①The Ctrl pin voltage is referenced to input -Vin.					

Output Specifications Item **Operating Conditions** Min. Max. Unit Typ. Voltage Accuracy 0%-100% load ±1 ±3 ---±0.5 Linear Regulation Input voltage variation from low to high at full load ---±0.2 % 10%-100% load Load Regulation ±0.5 ±0.75 ---25% load step change, nominal input 28V/48V 200 400 Transient Recovery Time μs voltage, di/dt=2.5A/µs 500 other 200 ---3.3V ±8 ±12 ---Transient Response Deviation 25% load step change, di/dt=2.5A/µs 05V ±6 ± 10 % --other ±3 ±5 ---±0.03 **Temperature Coefficient** Full load ------**%/**℃ 3.3V 150 ---100 05V, 12V 120 150 ---20MHz bandwidth, nominal input 24V 125 Ripple & Noise¹ -----mVp-p voltage, 10%-100% load 28V 250 ------48V ---150 250 Trim 90 ___ 110 % 105 Sense ------Over-temperature Protection[®] Product surface max. temperature ---135 ___ °C **Over-voltage Protection** 125 110 160 %Vo **Over-current Protection** Input voltage range 110 140 190 %lo Continuous, self-recovery, time≤3 seconds Short-circuit Protection

Note:

(1) The "parallel cable" method is used for Ripple and Noise test, please refer to DC-DC Converter Application Notes for specific information. Ripple & Noise at <10% load is 5% Vo max for other output; ripple & noise at <10% load is 5% Vo max for 3.3V output;

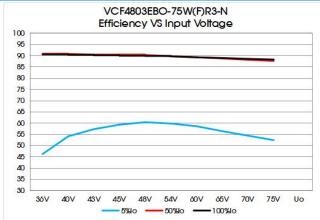
②The temperature of over-temperature protection of products with heat sink is subject to the internal device temperature.

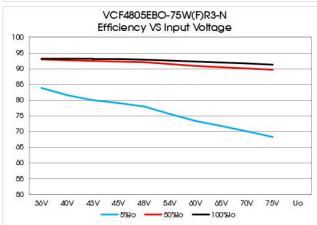
ltem	Operating Conditions	Min.	Тур.	Max.	Unit
Isolation Input-output Electric Strength Test for 1 minute with a leakage current of 1mA max.		2250			VDC
Insulation Resistance	Input-output resistance at 500VDC	1000			MΩ
Isolation Capacitance	Input-output capacitance at 100KHz/0.1V		1000		pF
Insulation type	Input-output	Basic insulation			
Operating Temperature	See Fig. 1	-40		+100	
Storage Temperature		-55		+125	°C
Storage Humidity	Non-condensing	5		95	%RH
Din Coldoring Desistance	Wave soldering, 10 seconds			+260	
Pin Soldering Resistance Temperature	Soldering spot is 1.5mm away from case for 10 second			+300	°C
Shock and Vibration Test		10-55	iHz, 10G, 30N	lin. along X, Y	and Z
Switching Frequency ⁽¹⁾	PWM mode		300		kHz

MORNSUN®

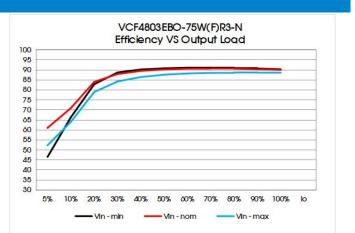
MORNSUN Guangzhou Science & Technology Co., Ltd.

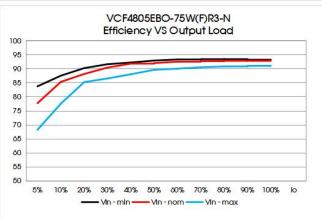
MORNSUN®


	Annospheric pre	əssure: 60 \sim 11	UKPO
MTBF Telcordia SR-332@25°C 200	2000		k hours

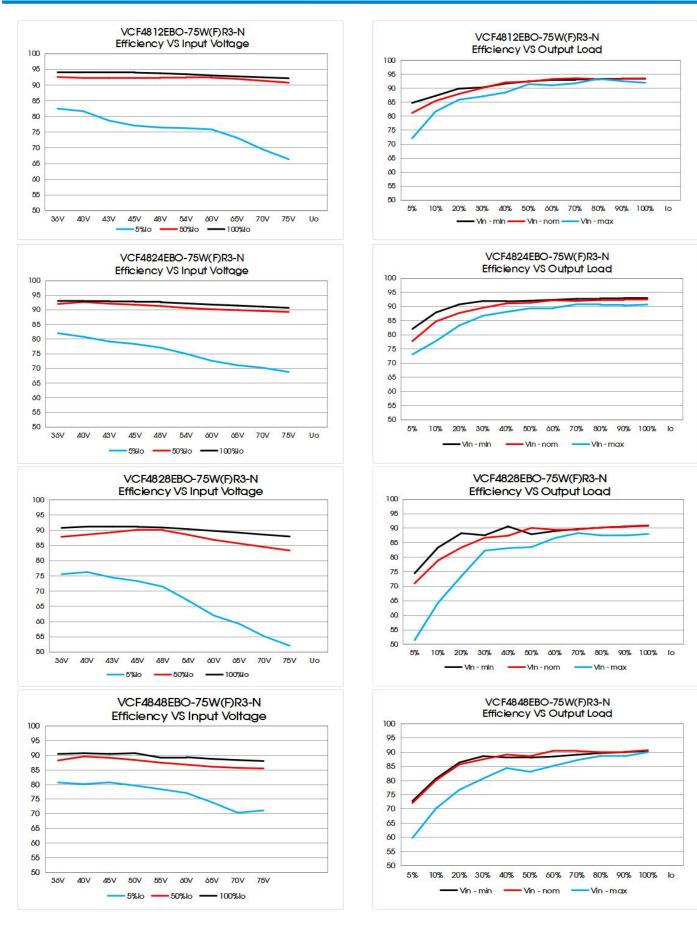

Note: ①Switching frequency is measured at full load. The module reduces the switching frequency for light load (below 50%) efficiency improvement.

Mechanical Specifications				
	VCF4803/05/12/24/28EBO-75WR3-N	58.42 x 22.86 x 9.69 mm		
Dimensions	VCF4848EBO-75WR3-N	58.42 x 22.86 x 9.86mm		
	VCF48_EBO-75WFR3-N	58.42 x 22.86 x 12.7mm		
	VCF48_EBO-75WR3-N	27.0g (Typ.)		
Weight	VCF48_EBO-75WFR3-N	35.9g (Typ.)		
Cooling Method Natural convection or forced air convection				


Electromo	Electromagnetic Compatibility (EMC)					
	CE	CISPR32/EN55032 CLASS A (see Fig. 6-1 for recommended circuit)				
Emissions	CL	/CLASS B (see Fig. 6-2 for recommended circuit)				
RE		CISPR32/EN55032 CLASS A (see Fig. 6-1 for recommended circuit)				
		/CLASS B (see Fig. 6-2 for recommended circuit)				
	ESD	IEC/EN61000-4-2 Contact ±6KV	perf. Criteria B			
	RS	IEC/EN61000-4-3 10V/m (see Fig. 6-1 and Fig. 6-2 for recommended circuit)	perf. Criteria A			
Immunity	EFT	IEC/EN61000-4-4 ±2KV (see Fig. 6-1 and Fig. 6-2 for recommended circuit)	perf. Criteria B			
in in its in its in its in the it	Surge	IEC/EN61000-4-5 line to line ±2KV (see Fig. 6-1 and Fig. 6-2 for recommended circuit)	perf. Criteria B			
	CS	IEC/EN61000-4-6 3 Vr.m.s (see Fig. 6-1 and Fig. 6-2 for recommended circuit)	perf. Criteria A			


Typical Characteristic Curve

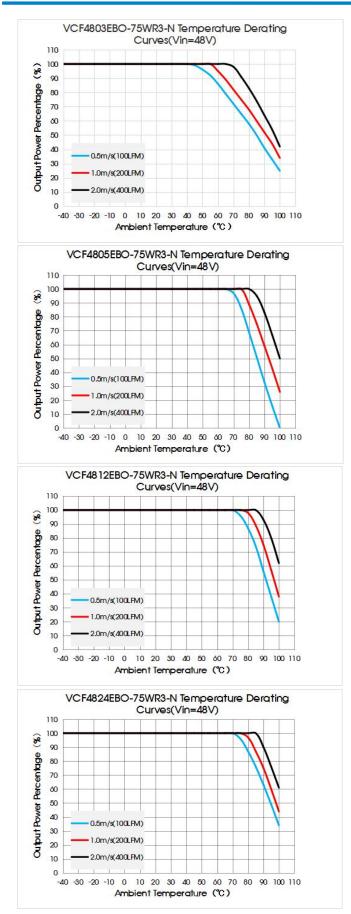
MORNSUN®



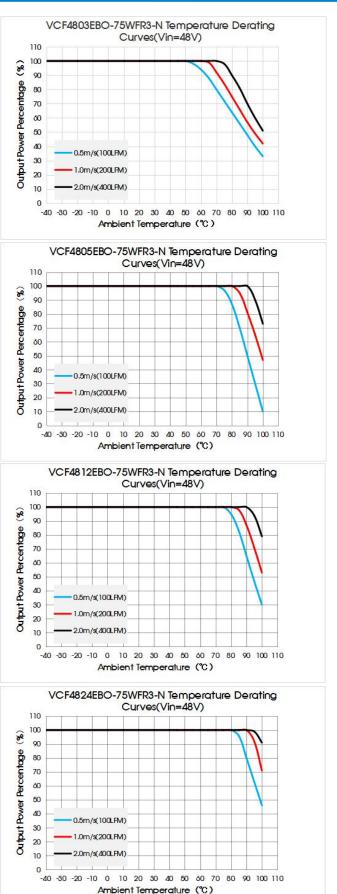
MORNSUN Guangzhou Science & Technology Co., Ltd.

2024.08.30-A/6 Page 3 of 15

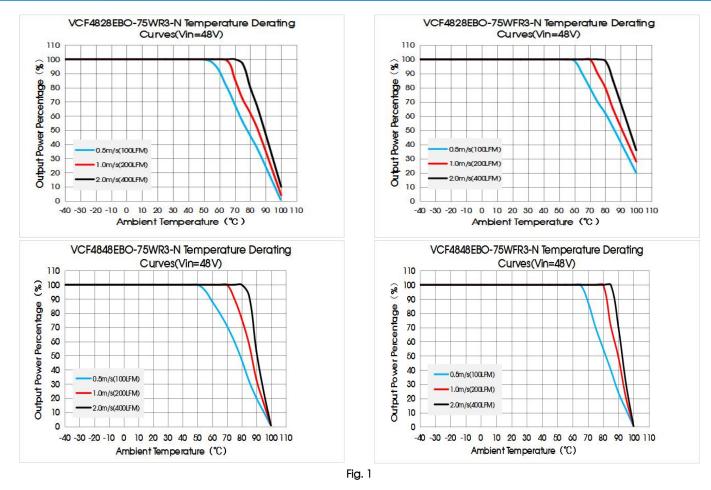
MORNSUN®



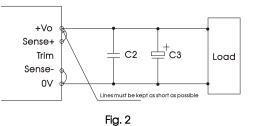
MORNSUN[®]


MORNSUN Guangzhou Science & Technology Co., Ltd.

2024.08.30-A/6 Page 4 of 15


MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.


2024.08.30-A/6 Page 5 of 15

Remote Sense Application

1. Remote Sense Connection if not used

Notes:

(1) If the sense function is not used for remote regulation the user must connect the +Sense to +Vo and -Sense to 0V at the DC-DC converter pins and will compensate for voltage drop across pins only.

(2) The connections between sense lines and their respective power lines must be kept as short as possible, otherwise they may be picking up noise, interference and/or causing unstable operation of the power module.

2. Remote Sense Connection used for Compensation

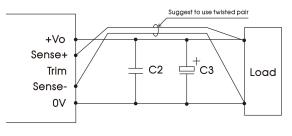
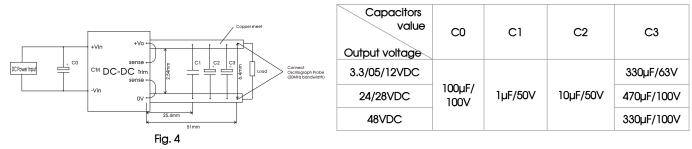


Fig. 3

MORNSUN Guangzhou Science & Technology Co., Ltd.

Notes:

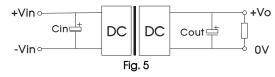

Using remote sense with long wires may cause unstable output, please contact technical support if long wires must be used.
 PCB-tracks or cables/wires for Remote Sense must be kept as short as possible. Twisted pair or shielded wires are suggested for remote compensation and must be kept as short as possible.

(3) We recommend using adequate cross section for PCB-track layout and/or cables to connect the power supply module to the load in order to keep the voltage drop below 0.3V and to make sure the power supply's output voltage remains within the specified range.
(4) Note that large wire impedance may cause oscillation of the output voltage and/or increased ripple. Consult technical support or factory for further advice of sense operation.

Design Reference

1. Ripple & Noise

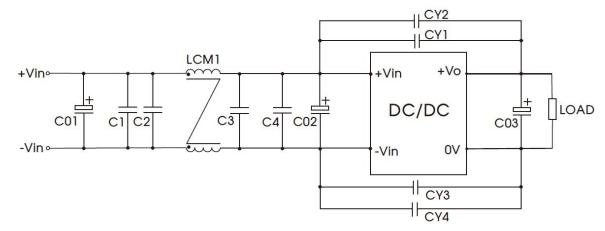
All the DC-DC converters of this series are tested before delivery using the recommended circuit shown in Fig. 4.


2. Typical application

MORNSUN®

All DC-DC converters of this series are tested before delivery using the recommended circuit shown in Fig. 5.

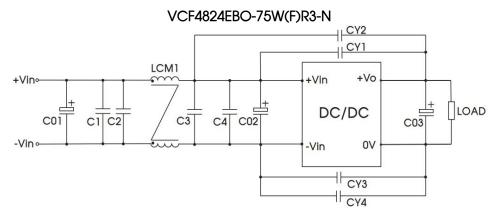
We recommended using Mornsun's EMC circuit, otherwise please ensure that at least a 100µF electrolytic capacitors is connected at the input in order to ensure adequate voltage surge suppression and protection.


Input and/or output ripple can be further reduced by appropriately increasing the input & output capacitor values Cin and Cout and/or by selecting capacitors with a low ESR (equivalent series resistance). Also make sure that the capacitance is not exceeding the specified max. capacitive load value of the product.

Vout (VDC)	Cin	Cout
3.3/05/12		330uF/63V
24/28	100uF/100V	470uF/100V
48		330uF/100V

3. EMC compliance recommended circuit

VCF4803/05/12EBO-75W(F)R3-N



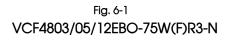
MORNSUN Guangzhou Science & Technology Co., Ltd.

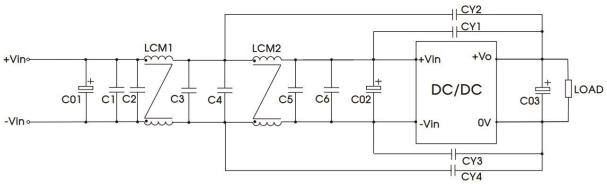
2024.08.30-A/6 Page 7 of 15

C01	470uF/100V (electrolytic capacitor)
C02	100uF/100V (electrolytic capacitor)
C03	330uF/63V (electrolytic capacitor)
C1, C2, C3, C4	4.7uF/100V
CY1, CY2, CY3, CY4	2.2nF/2KV
LCM1	2.0mH, recommended to use MORNSUN P/N: FL2D-A2-202

C01	470uF/100V (electrolytic capacitor)
C02	100uF/100V (electrolytic capacitor)
C03	330uF/63V (electrolytic capacitor)
C1, C2, C3, C4	4.7uF/100V
CY1, CY2, CY3, CY4	2.2nF/2KV
LCM1	2.0mH, recommended to use MORNSUN P/N: FL2D-A2-202

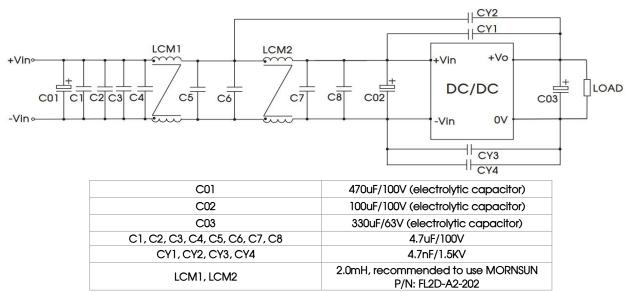
VCF4828/48EBO-75W(F)R3-N


MOV1	20101 Voltage sensitive resistor
C1, C6	470uF/100V(electrolytic capacitor)
C2, C3, C10	150uF/100V(electrolytic capacitor)
C4, C5, C7, C8, C9, C11	4.7uF/100V*4 Ceramic capacitor
CY3, CY6, CY8, CY10, CY12	1nF/400VAC Safety Y capacitance


MORNSUN®

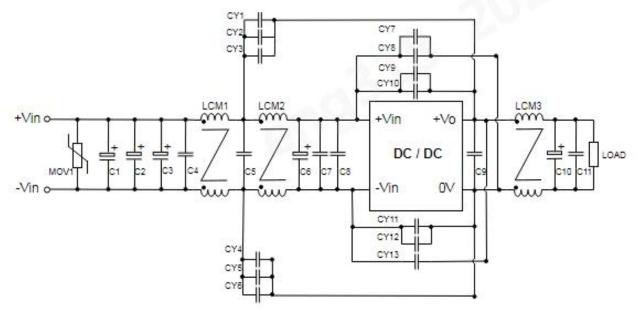
MORNSUN Guangzhou Science & Technology Co., Ltd.

MORNSUN®


CY2, CY5, CY9, CY11, CY13	2.2nF/400VAC Safety Y capacitance
CY1, CY4	4.7nF/400VAC*2 Safety Y capacitance
CY7	4.7nF/400VAC Safety Y capacitance
LCM1	7.0mH, recommended to use MORNSUN P/N: FL2D-60-702
LCM2	200uH, recommended to use MORNSUN P/N: FL2D-B0-201

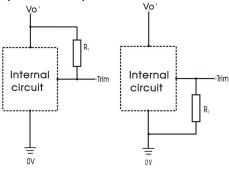
C01	470uF/100V (electrolytic capacitor)
C02	100uF/100V (electrolytic capacitor)
C03	330uF/63V (electrolytic capacitor)
C1, C2, C3, C4, C5, C6	4.7uF/100V
CY1, CY2, CY3, CY4	4.7nF/1.5KV
LCM1, LCM2	2.0mH, recommended to use MORNSUN P/N: FL2D-A2-202

VCF4824EBO-75W(F)R3-N


MORNSUN Guangzhou Science & Technology Co., Ltd.

2024.08.30-A/6 Page 9 of 15

MORNSUN[®]


VCF28/48EBO-75W(F)R3-N

MOV1	20101 Voltage sensitive resistor
C1, C6	470uF/100V(electrolytic capacitor)
C2, C3, C10	150uF/100V(electrolytic capacitor)
C4, C5, C7, C8, C9, C11	4.7uF/100V*4 Ceramic capacitor
CY3, CY6, CY8, CY10, CY12	1nF/400VAC Safety Y capacitance
CY2, CY5, CY9, CY11, CY13	2.2nF/400VAC Safety Y capacitance
CY1, CY4	4.7nF/400VAC*2 Safety Y capacitance
CY7	4.7nF/400VAC Safety Y capacitance
LCM1	7.0mH, recommended to use MORNSUN P/N: FL2D-60-702
LCM2	12mH, recommended to use MORNSUN P/N: FL2D-40-123
LCM3	200uH, recommended to use MORNSUN P/N: FL2D-B0-201

4. Trim function for output voltage adjustment (open if unused)

Trim up

Trim down

TRIM resistor connection (dashed line shows internal resistor network)

Calculating Trim resistor values: Trim up

MORNSUN®

Note:

RT = Trim Resistor value $\Delta\% = \left|\frac{V_{\textit{nom}} - V_{\textit{out}}}{V_{\textit{nom}}}\right| \times 100$

 V_{nom} = nominal output voltage V_{out} = desired output voltage

MORNSUN Guangzhou Science & Technology Co., Ltd.

2024.08.30-A/6 Page 10 of 15

$$R_{T} = \left(\frac{5.11V_{nom}(100 + \Delta\%)}{1.225\Delta\%} - \frac{511}{\Delta\%} - 10.22\right)(k\Omega)$$

Trim down

$$R_T = \left(\frac{511}{\Delta\%}\right) - 10.22(k\Omega)$$

When the output voltage is 12V, the up-regulated voltage is +10%, that is, the output voltage set to 13.2V:

$$\Delta\% = \left|\frac{12 - 13.2}{12}\right| *100 = 10 \qquad R_{\rm T} = \frac{5.11 * 12 * (100 + 10)}{1.225 * 10} - \frac{511}{10} - 10.22 = 489K\Omega$$

When the output voltage is 12V, the down-regulated voltage is -10%, that is, the output voltage set to 10.8V:

$$\Delta\% = \left|\frac{12 - 10.8}{12}\right| * 100 = 10 \qquad R_{\rm T} = \frac{511}{10} - 10.22 = 40.88K\Omega$$

5. The products do not support parallel connection of their output

6. Recommended solution for thermal testing

During the application process, the thermal design of the product can be evaluated in combination with the temperature derating curve of the product, or it can be determined by testing the temperature at the hot test point in Fig. 7 (Product with heat sink, test at the same point). The temperature of point A is belowe 125°C, which is the stable working range of VCF4805/12EBO-75W(F)R3-N. The temperature of point B is belowe 130°C, which is the stable working range of VCF4824/28EBO-75W(F)R3-N. The temperature of point C is belowe 130°C, which is the stable working range of VCF4803EBO-75W(F)R3-N. It is an safe operating area for VCF4848EBO-75W(F)R3-N if the temperature lower than 135°C at point D.

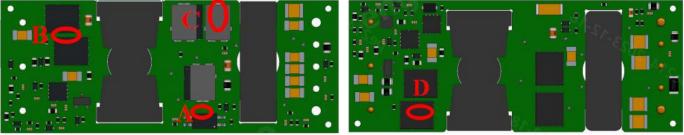
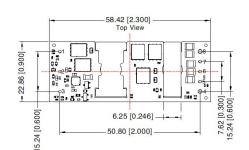
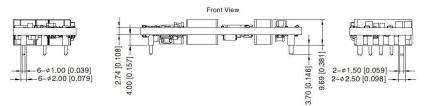
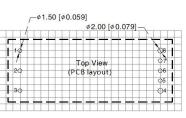


Fig. 7

7. For additional information please refer to DC-DC converter application notes on <u>www.mornsun-power.com</u>.

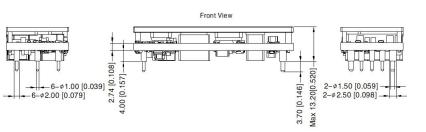


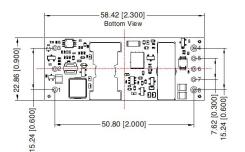

MORNSUN Guangzhou Science & Technology Co., Ltd.


MORNSUN[®]

THIRD ANGLE PROJECTION

VCF4803EBO-75WR3-N Dimensions and Recommended Layout

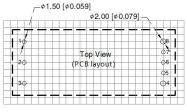



Note: Grid 2.54*2.54mm

Pin-Out	
Pin	Function
1	+Vin
2	Ctrl
3	–Vin
4	OV
5	-Sense
6	Trim
7	+Sense
8	+Vo

Note: Unit: mm[inch] Pin section tolerances: $\pm 0.10[\pm 0.004]$ General tolerances: $\pm 0.50[\pm 0.020]$ PIN1/2/3/5/6/7: $\phi 1.0mm$; PIN4/8: $\phi 1.5mm$ The layout of the device is for reference only, please refer to the actual product

VCF4803EBO-75WFR3-N Dimensions and Recommended Layout



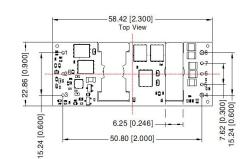
Note:

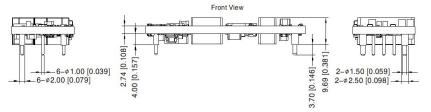
Unit: mm[inch] Pin section tolerances: $\pm 0.10[\pm 0.004]$ General tolerances: $\pm 0.50[\pm 0.020]$ PIN1/2/3/5/6/7: ϕ 1.0mm; PIN4/8: ϕ 1.5mm The layout of the device is for reference only, please refer to the actual product

THIRD ANGLE PROJECTION

Note: Grid 2.54*2.54mm

Pin-Out		
Pin	Function	
1	+Vin	
2	Ctrl	
3	-Vin	
4	OV	
5	-Sense	
6	Trim	
7	+Sense	
8	+Vo	


MORNSUN Guangzhou Science & Technology Co., Ltd.


2024.08.30-A/6 Page 12 of 15

MORNSUN®

THIRD ANGLE PROJECTION

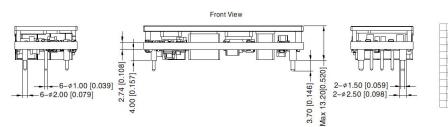
VCF4805/12/24/28EBO-75WR3-N Dimensions and Recommended Layout

	¢2.00 [¢0.079	$1 \rightarrow \dots$
╞┝┿┝┿	┶┥┶┥┿┝┿┝┥	⋅╘┥┶
10		\$ 8
1	Top View	60
20	Top View (PCB layout)	06
		05
30		04
+		

Note: Grid 2.54*2.54mm

Pin-Out		
Pin	Function	
1	+Vin	
2	Ctrl	
3	–Vin	
4	OV	
5	-Sense	
6	Trim	
7	+Sense	
8	+Vo	

Note: Unit: mm[inch] Pin section tolerances: $\pm 0.10[\pm 0.004]$ General tolerances: $\pm 0.50[\pm 0.020]$ PIN1/2/3/5/6/7: $\oplus 1.0mm$; PIN4/8: $\oplus 1.5mm$ The layout of the device is for reference only, please refer to the actual product


VCF4805/12/24/28EBO-75WFR3-N Dimensions and Recommended Layout

©4 ©5 05

07

[0.600]-

7.62 [

58.42 [2.300] — Bottom View

50.80 [2.000]

 THIRD ANGLE PROJECTION

Note: Grid 2.54*2.54mm

Pin-Out		
Pin	Function	
1	+Vin	
2	Ctrl	
3	-Vin	
4	0V	
5	-Sense	
6	Trim	
7	+Sense	
8	+Vo	
8	+Vo	

Note:

Unit: mm[inch] Pin section tolerances: $\pm 0.10[\pm 0.004]$ General tolerances: $\pm 0.50[\pm 0.020]$ PIN1/2/3/5/6/7: ϕ 1.0mm; PIN4/8: ϕ 1.5mm The layout of the device is for reference only, please refer to the actual product

15.24 [0.600]

22.86 [0.900]

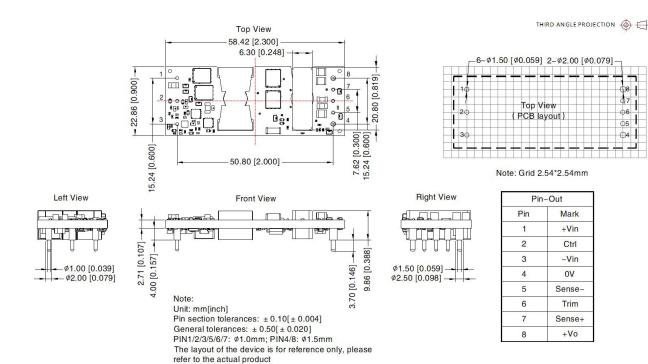
¢Ε

6)1

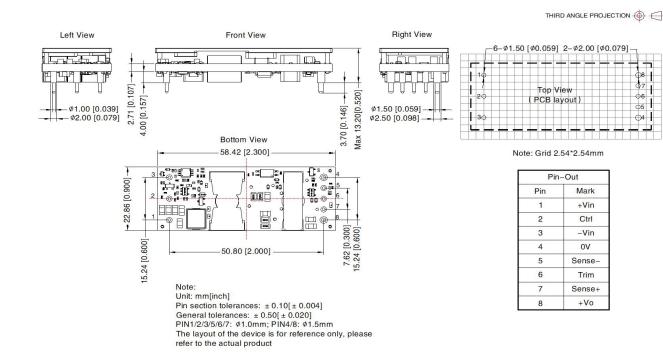
MORNSUN Guangzhou Science & Technology Co., Ltd.

2024.08.30-A/6 Page 13 of 15

MORNSUN®


07

6


04 I

+

VCF4848EBO-75WR3-N Dimensions and Recommended Layout

VCF4848EBO-75WFR3-N Dimensions and Recommended Layout

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

2024.08.30-A/6 Page 14 of 15

Notes:

- 1. For additional information on Product Packaging please refer to <u>www.mornsun-power.com.</u> Packaging bag number: 58210119(VCF48_EBO-75WR3-N), 58210152(VCF48_EBO-75WFR3-N);
- 2. We suggest to use module at load of over 10%, if not, the ripple of the product may exceeds the specification, but does not affect the reliability of the product;
- 3. The maximum capacitive load offered were tested at input voltage range and full load;
- 4. Unless otherwise specified, parameters in this datasheet were measured under the conditions of Ta=25°C, humidity<75%RH with nominal input voltage and rated output load;
- 5. All index testing methods in this datasheet are based on company corporate standards;
- 6. We can provide product customization service, please contact our technicians directly for specific information;
- 7. Products are related to laws and regulations: see "Features" and "EMC";
- 8. Our products shall be classified according to ISO14001 and related environmental laws and regulations, and shall be handled by gualified units.

Mornsun Guangzhou Science & Technology Co., Ltd.

Address: No. 8 Nanyun 4th Road, Huangpu District, Guangzhou, China Tel: 86-20-38601850 Fax: 86-20-38601272

MORNSUN®

E-mail: info@mornsun.cn

www.mornsun-power.com

MORNSUN Guangzhou Science & Technology Co., Ltd.

2024.08.30-A/6 Page 15 of 15