

120W isolated DC-DC converter
Ultra-wide input and regulated single output

- Ultra-wide input voltage range: 18-36VDC
- High efficiency up to 92%
- I/O isolation test voltage 2.25k VDC
- Operating ambient temperature range: -40°C to +105°C
- Input under-voltage protection, output short-circuit, over-current, over-voltage, over-temperature protection
- International standard package: 1/8 brick

VCF24_EBO-120W(F)R3-N series are isolated 120W DC-DC products with 2:1 input voltage. They feature efficiency up to 92%, 2250VDC isolation, operating temperature of -40 °C to +85 °C, Input under-voltage protection, output short-circuit, over-current, over-voltage, over-temperature protection, they are ideally and widely used in applications such as industrial control, electric power, instruments and communications fields.

Selection	Guide							
	_	_	Input Voltage (VDC)		Output		Full Load	Max.
Certification	Part No. $^{\odot}$	Ctrl Logic ²	Nominal (Range)	Max. ³	Voltage (VDC)	Current (mA) (Max./Min.)	Efficiency(%) [®] Min./Typ.	Capacitive Load(µF)
	VCF2405EBO-120W(F)R3-N	N	24 (18-36)	40	05	24.0/0	90/92	10000
	VCF2412EBO-120W(F)R3-N	N	24 (18-36)	40	12	10.0/0	90/92	5000
	VCF2415EBO-120W(F)R3-N	N	24 (18-36)	40	15	8.0/0	90/92	4000
	VCF2424EBO-120W(F)R3-N	N	24 (18-36)	40	24	5.0/0	89/91	3000

Note:

⁽⁴⁾ Efficiency is measured in nominal input voltage and rated output load.

Input Specifications					
Item	Operating Conditions	Min.	Тур.	Max.	Unit
Input Current (full load/no-load)			5495/20	5618/30	A
Reflected Ripple Current	Nominal input voltage		100		mA
Surge Voltage (1sec. max.)		-0.7	_	50	VDC
Start-up Voltage				18	
Input Under-voltage Protection		14	15	-	
Startup time	Nominal input voltage and constant resistance load			100	ms
Input Filter			PI f	ilter	
Hot Plug			Unavo	ailable	
Input anti-reverse connection protection			Unavo	ailable	
	Module on	Ctrl pin pulled low to GND (0-1.2VD)		1.2VDC)	
Ctrl [®]	Module off	Ctrl pin open or pulled high TTL		h TTL	
	Input current when off		3	10	mA
Ctrl start delay time			30	50	ms

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

① 'F' is the package with heat dissipation plate. If it is applied to the occasion with higher heat dissipation requirements, we can choose the module with heat dissipation plate;

^{2&}quot;N" means Ctrl is negative.

³ Exceeding the maximum input voltage may cause permanent damage;

Note: 1) The Ctrl pin voltage is referenced to input -Vin.

Output Specification	IS .					
Item	Operating Conditions		Min.	Тур.	Max.	Unit
Voltage Accuracy	0%-100% load		-	±1	±3	
Linear Regulation	Input voltage variation from	low to high at full load		±0.2	±0.5	%
Load Regulation	5%-100% load			±0.5	±0.75	
Transient Recovery Time	25% load step change			200	400	μs
Transfer t Danie and David attack	050/ 1 1-+	5V output		±6	±10	O/
Transient Response Deviation	25% load step change Other	Others		±3	±5	%
Temperature Coefficient	Full load				±0.03	%/℃
Ripple & nominal [®]	20MHz bandwidth, nominal i	nput voltage, 5%-100% load		120	150	mVp-p
Trim			90		110	
Sense					105	%
Over-temperature Protection	Max. Case Temperature		135		°C	
Over-voltage Protection		110	125	160	%Vo	
Over-current Protection	Input voltage range	110	140	170	%lo	
Short-circuit Protection		С	ontinuous,	self-recov	ery	

注:

②The overtemperature protection temperature of a package with a heat dissipation plate depends on the temperature of the internal components.

Item	Operating Conditions	Min.	Тур.	Max.	Unit	
Isolation	Input-output Electric Strength Test for 1 minute with a leakage current of 1mA max.	2250		-	VDC	
Insulation Resistance	Input-output resistance at 500VDC	1000			M Ω	
Isolation Capacitance	Input-output capacitance at 100KHz/0.1V		1000		рF	
Operating Temperature	See temperature derating curves	-40	-	+85	- °C	
Storage Temperature		-55		+125		
Storage Humidity	Non-condensing	5		95	%RH	
Pin Soldering Resistance	Wave-soldering, 10 seconds			+260	*6	
Temperature	Soldering spot is 1.5mm away from case for 10 seconds			+300	_ ℃	
Shock And Vibration		10-55Hz,	5G, 3minutes along X, Y	s period, 60mi / and Z axis	inutes each	
Switching Frequency	PWM mode	-	270		kHz	
Altitude		Altitude:≤	4000m,Atmos	pheric pressu	re:56-110KI	
MTBF	Telcordia SR-332@25°C	1000	_	-	k hours	

 Mechanical Specifications

 Dimension
 VCF24_EBO-120WR3-N
 58.42 x 22.86 x 9.71mm

 VCF24_EBO-120WFR3-N
 58.42 x 22.86 x 13.20mm

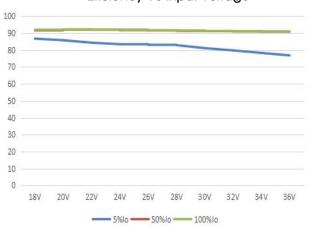
 Weight
 VCF24_EBO-120WR3-N
 27.0g (Typ.)

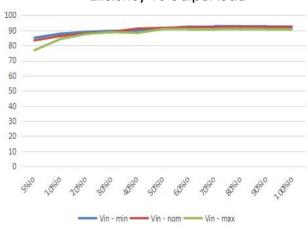
 VCF24_EBO-120WFR3-N
 35.9g (Typ.)

Electromagnetic Compatibility (EMC)						
EN AL	CF.	CISPR32/EN55032	CLASS A (see Fig. 6-1 for recommended circuit) / CLASS B (see Fig.			
EMI CE		6-2 for recommend	led circuit)			

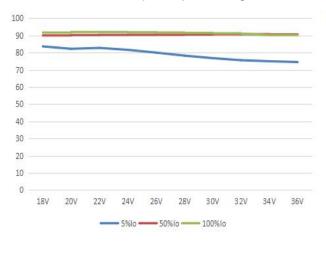
Free air convection (20LFM) or forced air convection

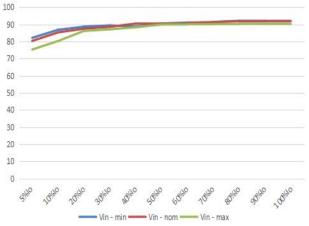

Cooling Method


①Under 0% -5% load conditions, ripple & noise does not exceed 5%Vo. The "parallel cable" method is used for ripple and noise test, please refer to DC-DC Converter Application Notes for specific information.

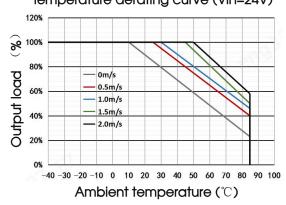

	RE	CISPR32/EN55032 CLASS A (see Fig. 6-1 for recommended circuit	t) / CLASS B (see Fig.
	KE	6-2 for recommended circuit)	
	ESD	IEC/EN61000-4-2 Contact ±6KV	perf. Criteria B
	RS	IEC/EN61000-4-3 10V/m	perf. Criteria A
EMS	EFT	IEC/EN61000-4-4 ±2KV (see Fig. 6-1 for recommended circuit)	perf. Criteria B
	Surge	IEC/EN61000-4-5 line to line ±2KV (see Fig. 6-1 for recommended circuit)	perf. Criteria B
	CS	IEC/EN61000-4-6 10 Vr.m.s	perf. Criteria A

Typical Characteristic Curve

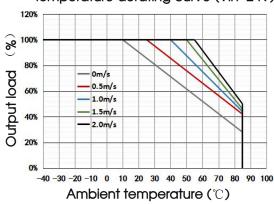



VCF2412EBO-120W(F)R3-N Eficiency VS Output load

VCF2415EBO-120W(F)R3-N Eficiency VS Input voltage



VCF2415EBO-120W(F)R3-N Eficiency VS Output load



VCF2405EB0-120WR3-N
Temperature derating curve (Vin=24V)

VCF2412/15EB0-120WR3-N
Temperature derating curve (Vin=24V)

VCF2424EB0-120WR3-N

Temperature derating curve (Vin=24V)

120%

80%

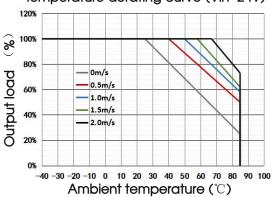
100%

80%

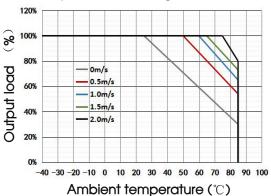
-0.5m/s

-0.5m/s

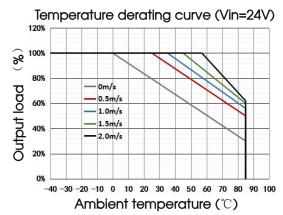
-1.5m/s


-2.0m/s

-2.0m/s


-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

Ambient temperature (°C)


VCF2405EB0-120WFR3-N Temperature derating curve (Vin=24V)

VCF2412/15EB0-120WFR3-N Temperature derating curve (Vin=24V)

VCF2424EB0-120WFR3-N

Remote Sense Application

1. Remote Sense Connection if not used

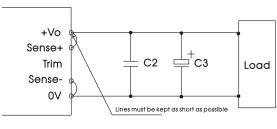


Fig. 2

Notes:

- 1) If the sense function is not used for remote regulation the user must connect the +Sense to +Vo and -Sense to 0V at the DC-DC converter pins and will compensate for voltage drop across pins only.
- 2) The connections between Sense lines and their respective power lines must be kept as short as possible, otherwise they may be picking up noise, interference and/or causing unstable operation of the power module.
- 2. Remote Sense Connection used for Compensation

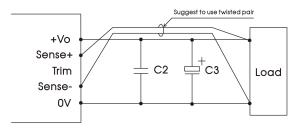
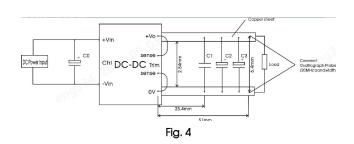


Fig. 3

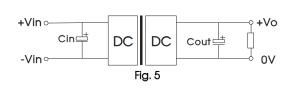

Notes:

- (1) Using remote sense with long wires may cause unstable output, please contact technical support if long wires must be used.
- (2) PCB-tracks or cables/wires for Remote Sense must be kept as short as possible. Twisted pair or shielded wairs are suggested for remote compensation and must be kept as short as possible.
- (3) We recommend using adequate cross section for PCB-track layout and/or cables to connect the power supply module to the load in order to keep the voltage drop below 0.3V and to make sure the power supply's output voltage remains within the specified range.
- (4) Note that large wire impedance may cause oscillation of the output voltage and/or increased ripple. Consult technical support or factory for further advice of sense operation.

Design Reference

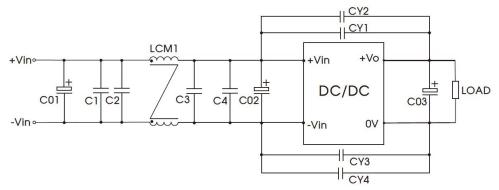
1. Ripple & Noise

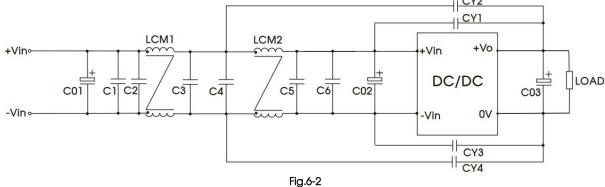
All the DC-DC converters of this series are tested before delivery using the recommended circuit shown in Fig. 4.


Capacitors value Output voltage	C0	C1	C2	СЗ
05VDC				
12VDC	100µF/			
15VDC		1µF/50V	10µF/50V	330µF/63V
24VDC				

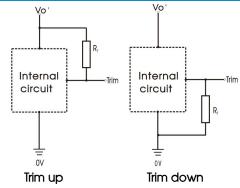
2. Typical application

All DC-DC converters of this series are tested before delivery using the recommended circuit shown in Fig. 5.


We recommended using Mornsun's EMC circuit, otherwise please ensure that at least a 100µF electrolytic capacitors is connected at the input in order to ensure adequate voltage surge suppression and protection.


Input and/or output ripple can be further reduced by appropriately increasing the input & output capacitor values Cin and Cout and/or by selecting capacitors with a low ESR (equivalent series resistance). Also make sure that the capacitance is not exceeding the specified max. capacitive load value of the product.

Vout (VDC)	Cin	Cout	
05			
12 15	100 JE / 100 V	330.15/43\/	
	100uF/100V	330uF/63V	
24			


3. EMC compliance recommended circuit

C01	470uF/100V (electrolytic capacitor)
C02	100uF/100V (electrolytic capacitor)
C03	330uF/63V (electrolytic capacitor)
C1, C2, C3, C4, C5, C6	4.7uF/100V
CY1, CY2, CY3, CY4	4.7nF/1.5KV
LCM1, LCM2	2.0mH, recommended to use MORNSUN P/N: FL2D-A2-202(C)

4. Trim Function for Output Voltage Adjustment (open if unused)

TRIM resistor connection (dashed line shows internal resistor network)

Calculating Trim resistor values:

Trim up

$$R_T = \left(\frac{5.11 V_{nom} (100 + \Delta\%)}{1.225 \Delta\%} - \frac{511}{\Delta\%} - 10.22\right) (k\Omega)$$

Trim down

$$R_T = \left(\frac{511}{\Lambda\%}\right) - 10.22(k\Omega)$$

Note:

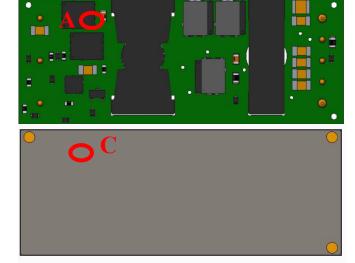
RT = Trim Resistor value

$$\Delta\% = \left| \frac{V_{nom} - V_{out}}{V_{nom}} \right| \times 100$$

 V_{nom} = nominal output voltage

 V_{out} = desired output voltage

When the output voltage is 12V, the up-regulated voltage is +10%, that is, the output voltage set to 13.2V:

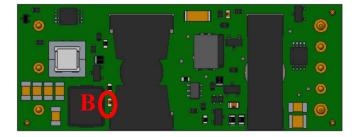

$$\Delta\% = \left| \frac{12 - 13.2}{12} \right| *100 = 10 \qquad \qquad R_T = \frac{5.11 *12 * (100 + 10)}{1.225 *10} - \frac{511}{10} - 10.22 = 489 K\Omega$$

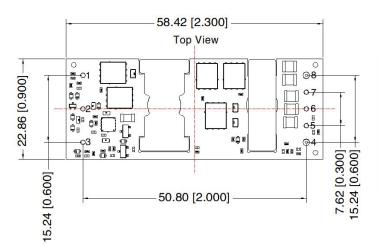
When the output voltage is 12V, the down-regulated voltage is -10%, that is, the output voltage set to 10.8V:

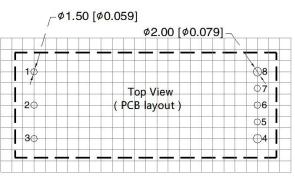
$$\Delta\% = \left| \frac{12 - 10.8}{12} \right| * 100 = 10$$
 $R_T = \frac{511}{10} - 10.22 = 40.88 K\Omega$

5. Recommended solution for thermal testing

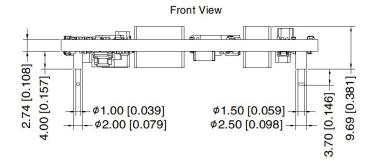
During the application process, the thermal design of the product can be evaluated by combining the product temperature derating curve, or the stable working interval of the product can be determined by the temperature of the thermal test point in Figure 7. When the temperature at point A is lower than 130°C, it is the stable operating range of VCF24_EBO-120WR3-N. When the temperature of point B and point C is lower than 115°C, the product with heat dissipation plate is in the stable operating range.




Fig. 7



- 6. The products do not support parallel connection of their output
- 7. For additional information please refer to DC-DC converter application notes on www.mornsun-power.com

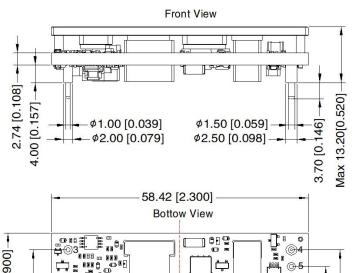

VCF24_EBO-120WR3-N Dimensions and Recommended Layout

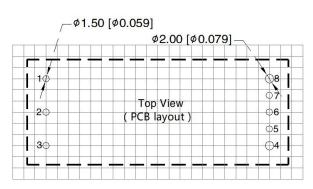
Note: Grid 2.54*2.54mm

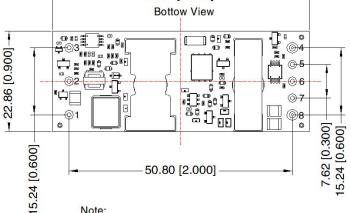
Pin-Out				
Pin	Mark			
1	+Vin			
2	Ctrl			
3	–Vin			
4	OV			
5	-Sense			
6	Trim			
7	+Sense			
8	+Vo			

Note:

Unit: mm[inch]


Pin section tolerances: \pm 0.10[\pm 0.004] General tolerances: \pm 0.50[\pm 0.020] PIN1/2/3/5/6/7: ϕ 1.0mm; PIN4/8: ϕ 1.5mm The layout of the device is for reference only, please


refer to the actual product


VCF24_EBO-120WFR3-N Dimensions and Recommended Layout

Note: Grid 2.54*2.54mm

Pin-Out				
Pin	Function			
1	+Vin			
2	Ctrl			
3	–Vin			
4	OV			
5	-Sense			
6	Trim			
7	+Sense			
8	+Vo			

Unit: mm[inch]

Pin section tolerances: \pm 0.10[\pm 0.004] General tolerances: \pm 0.50[\pm 0.020] PIN1/2/3/5/6/7: ϕ 1.0mm; PIN4/8: ϕ 1.5mm The layout of the device is for reference only, please

refer to the actual product

Notes:

- 1. For additional information on Product Packaging please refer to www.mornsun-power.com. Packaging bag number: 58210119(VCF24_EBO-120WR3-N, 58210152(VCF24_EBO-120WFR3-N);
- We suggest to use module at load of over 5%, if not, the ripple of the product may exceeds the specification, but does not affect the reliability of the product;
- 3. The maximum capacitive load offered were tested at input voltage range and full load;
- 4. Unless otherwise specified, parameters in this datasheet were measured under the conditions of Ta=25°C, humidity<75%RH with nominal input voltage and rated output load;
- All index testing methods in this datasheet are based on company corporate standards;
- 6. We can provide product customization service, please contact our technicians directly for specific information;
- Products are related to laws and regulations: see "Features" and "EMC";
- 8. Our products shall be classified according to ISO14001 and related environmental laws and regulations, and shall be handled by qualified units.

Mornsun Guangzhou Science & Technology Co., Ltd.

Address: No. 5, Kehui St. 1, Kehui Development Center, Science Ave., Guangzhou Science City, Huangpu District, Guangzhou, P. R. China Tel: 86-20-38601850 Fax: 86-20-38601272 E-mail: info@mornsun.cn www.mornsun-power.com