MORNSUN[®]

100W isolated DC-DC converter

EN50155

EN45545

Ultra-wide input and regulated single output

FEATURES

- Ultra-wide 12:1 input voltage range: 14 -160VDC
- High efficiency up to 90%
- Reinforced insulation, I/O isolation test voltage 3k VAC
- Operating ambient temperature range -40°C to +105°C
- Active hold-up control, programmable input under-voltage control
- Input reverse polarity protection, Input under-voltage protection, output over-voltage, over-current, short-circuit protection, over-temperature protection
- Industry standard 1/4-Brick package
- Design to meet AREMA standards
- Design to meet UL62368 standards

The UWTH1D_QB-100W(H/F)R3 series is a high-performance product specifically designed for a variety of railway applications. The output power can reach at 100W. It features wide input voltage of 14-160VDC, which is compatible with nominal input type of 24V, 48V, 72V, 96V and 110V. Meets EN50155 standard for voltage fluctuations. The reinforced high insulation 3000VAC ensures that the system can still be used safely in 5000m high altitude applications. The allowable operating temperature is up to 105° C. It integrates multiple protection functions to ensure the safety and high reliability of the system, with functions of Remote control and compensation, output voltage adjustment, etc., which perfectly matches the requirements of line loss and special voltage in the application. It is widely used in vehicle-mounted switches, train control systems and associated equipment.

Selection Guide											
		Input Voltage (VDC)		Output		Full Load	Max.				
Certification	Part No. [®]	Nominal (Range)	Max. [©]	Voltage (VDC)	Current (mA) (Max./Min.)	Efficiency(%) ³ Min./Typ.	Capacitive Load(µF)				
	UWTH1D12QB-100W(H/F)R3			12	8330/0	88/90 87/89	<u>88/00</u>	99/00	<u>88/00</u>	88/00	7000
	UWTH1D15QB-100W(H/F)R3	110 (1 4-160)	140	15	6670/0		4500				
CSA/EN/ BS EN/IEC	UWTH1D24QB-100W(H/F)R3			24	4160/0		1800				
	UWTH1D28QB-100W(H/F)R3		160	28	3570/0		1300				
	UWTH1D48QB-100W(H/F)R3			48	2080/0		1000				
	UWTH1D54QB-100W(H/F)R3			54	1850/0	88/90	820				

Note:

O Use F/H suffix for heat sink mounting. We recommend to choose modules with a heat sink for enhanced heat dissipation and applications with extreme temperature requirements;

②Exceeding the maximum input voltage may cause permanent damage;

3Efficiency is tested at nominal voltage and full load at +25 $^\circ$ C ambient;

When UWTH1D_QB-100W(H/F)R3 series products input voltage is 14V~16.8V, the converter can work 100ms at full load.

Input Specifications						
Item	Operating Conditions		Min.	Тур.	Max.	Unit
	24V input voltage	24V, 28V output		4789	4902	
	24V Input volidge	12V, 15V, 48V, 54V output		4735	4845	
Input Current (full load)	36V input voltage	24V, 28V output		3157	3230	mA
		12V, 15V, 48V, 54V output		3121	3193	
	48V input voltage	24V, 28V output		2341	2396	
	46V Input Volidge	12V, 15V, 48V, 54V output		2315	2369	
	70\/inputs/oltage	24V, 28V output		1561	1597	
	72V input voltage	12V, 15V, 48V, 54V output		1543	1578	

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

		24V, 28V output		1184	1211	
	96V input voltage	12V, 15V, 48V, 54V output		1171	1197	-
		24V, 28V output		1033	1057	
Input Current (full load)	110V input voltage	12V, 15V, 48V, 54V output		1033	1037	-
Maximum input current					8930	mA
Reflected Ripple Current	Nominal input voltage			150		_
Surge Voltage (1sec. max.)			-0.7		200	
Start-up Voltage					14	VDC
Start-up Current	Nominal 48 input voltage			5000	mA	
Start-up Time	Nominal input voltage, c		50	100	ms	
Input Filter				LC fil	ter	
Hot Plug				Unavai	lable	
No-load Input Power	Ctrl pin open or pulled h	igh, DC-DC ON (14-160VDC)		1.2	2.0	w
Idle Input Power	Ctrl pin pulled low to -Vir	n, DC-DC OFF (14-160VDC)		0.7	1.6	vv
Ctrl ^①	Module on		Ctrl pin open or pulled high (3.5-12VDC)			
CIII	Module off		Ctrl pin pulled low to -Vin (0-			VDC)
Input Under-voltage Protection			10	11		
	Operating temperature	10			VDC	
UVLO ²	Operating temperature module off	range, UVLO pin connect to -Vin,	60			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Note:	•					

Note: ①The Ctrl pin voltage is referenced to input -Vin; ②The UVLO pin voltage is referenced to input -Vin, please refer to Fig. 9.

Output Specification	S				
Item	Operating Conditions	Min.	Тур.	Max.	Unit
Voltage Accuracy	Nominal input voltage, 0%-100% load			±2	
Linear Regulation	Input voltage variation from low to high at full load		±0.2	±0.5	%
Load Regulation	Nominal input voltage, 10%-100% load		±0.5	±l	
Transient Recovery Time	05% load top obanac @05°C			500	μs
Transient Response Deviation	25% load step change @25°C		±3	±5	%
Temperature Coefficient	Nominal output voltage, full load			±0.03	%/ ℃
Ripple & Noise ^①	20MHz bandwidth, 10%-100% load		150	300	mVp-p
Trim		90		110	9/\/ ~
Sense				105	%Vo
Over-temperature Protection	Max. Case Temperature		115	125	°C
Over-voltage Protection		110		160	%Vo
Over-current Protection	Input voltage range (14-160V)	105	160	260	%lo
Short-circuit Protection		Hiccup, continuous, self-recovery			
Note:					

(1) The "Tip and barrel method" is used for ripple and noise test, for details please refer to Fig.3.

Gen	-	0	

General Specification	าร					
Item	Operating Conditions		Min.	Тур.	Max.	Unit
	Electric Strength Test for 1	Input-output	3000			
Isolation	minute with a leakage	Input-case	2500			VAC
	current of 5mA max	Output-case	2100			
Insulation Resistance	Input-output resistance at 50	Input-output resistance at 500VDC				MΩ
Isolation Capacitance	Input-output capacitance of	Input-output capacitance at 100KHz/0.1V				pF
Operating Temperature			-40		105	
Storage Temperature			-55		125	°C
Pin Soldering Resistance Temperature	Soldering spot is 1.5mm awa	ly from case for 10 seconds			300	
Storage Humidity	Non-condensing	Non-condensing			95	%RH
Switching Frequency	PWM mode	PWM mode				KHz
MTBF	IEC 61709 @25°C		1000			k hours

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

MORNSUN[®]

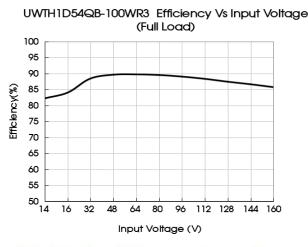
EN60068-2-1
EN60068-2-2
EN60068-2-30
IEC/EN61373 Class B
PD 3
EN45545-2, HL3
EN60068-2-11, Ka
EN60068-2, Db variant 2
5000m
EN60068-1, Ad and Ab

Note: (1)When the altitude is above 2000m, the product surface max. temperature must be below 105° C.

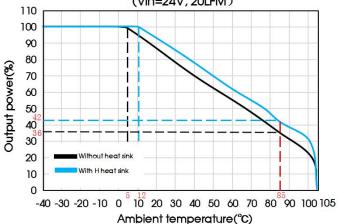
Mechanical Spe	Mechanical Specifications					
Case Material	Aluminum alloy case; Black plastic botto	om, flame-retardant and heat-resistant (UL94 V-0)				
Dimension	Without heat sink	57.90 x 36.80x 12.70mm				
	With H heat sink	57.90 x 36.80x 25.40mm				
	With F heat sink	62.00 x 56.00 x 14.50mm				
	Without heat sink	79.5g (Тур.)				
Weight	With H heat sink	109.5g (Тур.)				
	With F heat sink	99.5g (Typ.)				
Cooling Method	Conduction cooling or forced air cooling Free air convection cooling with additional heat sink					

Electron	nagnetic	Compatik	bility (EMC) (EN50121-3-2)	
		EN50121-3-2	EN55016-2-1 150kHz-500kHz 99dBuV (see Fig. 6 for recommended cir 500kHz-30MHz 93dBuV (see Fig. 6 for recommended cir	
Emissions	CE	EN55032	EN55032-11 150kHz-500kHz 79dBuV (see Fig. 6 for recommended circ 500kHz-30MHz 73dBuV (see Fig. 6 for recommended circ	
	RE	CISPR16-2-3	30MHz-230MHz40dBuV/m at 10m(see Fig. 6 for recommended circuit)230MHz-1GHz47dBuV/m at 10m(see Fig. 6 for recommended circuit)1GHz-6GHz47dBuV/m at 10m(see Fig. 6 for recommended circuit)	
	ESD	EN61000-4-2	Contact ±6kV/Air ±8kV	perf. Criteria A
	RS	EN61000-4-3	80 – 800MHz 20V/m 800 – 1000MHz 20V/m 1400 – 2000MHz 10V/m 2000 – 2700MHz 5V/m 5100 – 6000MHz 3V/m	perf. Criteria A
Immunity	EFT	EN61000-4-4	±2kV 5/50ns 5kHz (see Fig. 6 for recommended circuit)	perf. Criteria A
Surge EN61000-4-5 (see Fig. 6 for recommended circuit) line to line $\pm 1kV (2 \Omega, 18 \mu F)$ line to ground $\pm 2kV(12 \Omega)$		line to line ±1kV (42Ω , 0.5μ F) line to ground ±2kV(42Ω , 0.5μ F) (see Fig. 6 for recommended circuit) line to line ±1kV (2Ω , 18μ F) line to ground ±2kV(12Ω , 9μ F) (see Fig. 6 for recommended circuit)	perf. Criteria A	
	CS	EN61000-4-6	0.15MHz-80MHz 10V r.m.s	perf. Criteria A

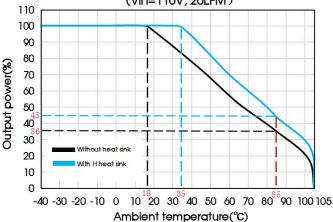
Electro	magnetic	Compatib	ility (EMC) (AREMA)	
	05	CISPR16-2-1	150kHz-500kHz 79dBuV (see Fig. 6 for recommended circuit)	
Emissions	CE	CISPR16-1-2	500kHz-30MHz 73dBuV (see Fig. 6 for recommended circuit)	
	RE	CISPR16-2-3	30MHz-230MHz40dBuV/m at 10m(see Fig. 6 for recommended circuit)230MHz-1GHz47dBuV/m at 10m(see Fig. 6 for recommended circuit)	
	ESD	IEC61000-4-2	Contact ±6kV/Air ±8kV	perf. Criteria A
Immunity	RS	IEC61000-4-3	80 - 1000MHz 10V/m 160 - 165MHz 20V/m 450 - 470MHz 20V/m 800 - 960MHz 20V/m 1400 - 2000MHz 20V/m 2100 - 2500MHz 5V/m	perf. Criteria A
	EFT	IEC61000-4-4	±2kV 5/50ns 5kHz (see Fig. 6 for recommended circuit)	perf. Criteria A

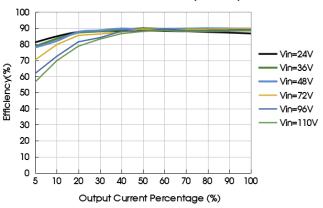

MORNSUN[®]

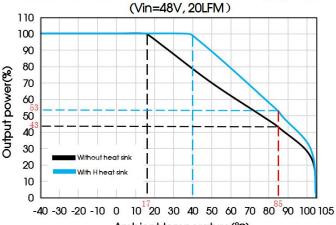
MORNSUN Guangzhou Science & Technology Co., Ltd.


MORNSUN[®]

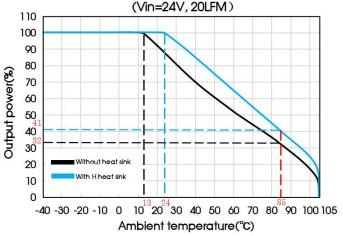
	Surge	IEC61000-4-5	line to line ±2kV (2 Ω (see Fig. 6 for recom		Ω , 18 μ F) line to ground ±2kV(2 Ω , 18 μ F) nmended circuit)	perf. Criteria A
	CS	IEC61000-4-6	0.15MHz	-80MHz	10V r.m.s	perf. Criteria A
		60Hz	100A/m	(see Fig. 6 for recommended circuit)		
MS	IVI3	IEC61000-4-8	60Hz	300A/m	(see Fig. 6 for recommended circuit)	perf. Criteria A


Typical Performance Curves

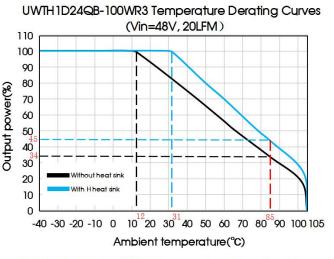

UWTH1D12QB-100WR3 Temperature Derating Curves (Vin=24V, 20LFM)


UWTH1D12QB-100WR3 Temperature Derating Curves (Vin=110V, 20LFM)

UWTH1D54QB-100WR3 Efficiency Vs Output Load

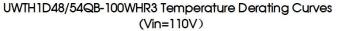


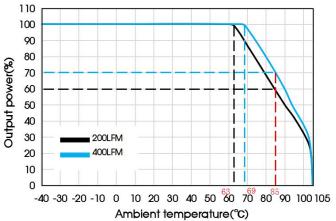
UWTH1D12QB-100WR3 Temperature Derating Curves


Ambient temperature(°C)

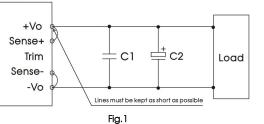
UWTH1D24QB-100WR3 Temperature Derating Curves



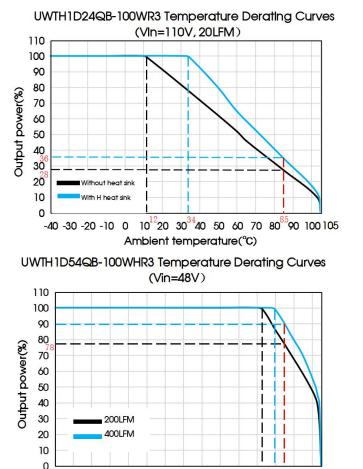

MORNSUN[®]


MORNSUN Guangzhou Science & Technology Co., Ltd.

UWTH1D54QB-100WHR3 Temperature Derating Curves



Remote Sense Application

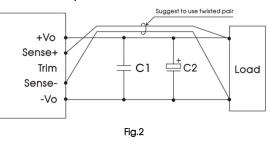

1. Remote Sense Connection if not used

MORNSUN Guangzhou Science & Technology Co., Ltd.

MORNSUN®

-40 -30 -20 -10 0 10 20 30 40 50 60 70⁷³80⁸⁵90 100 105 Ambient temperature(°C)

2023.01.12-A/3 Page 5 of 12



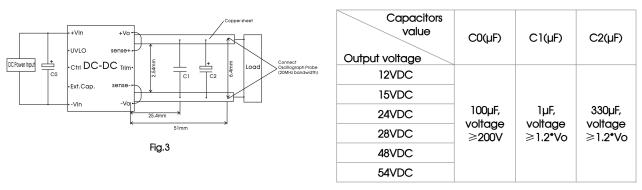
Notes:

(1) If the sense function is not used for remote regulation the user must connect the +Sense to +Vo and -Sense to -Vo.

(2) The connections between Sense lines and their respective power lines must be kept as short as possible, otherwise they may be picking up noise, interference and/or causing unstable operation of the power module.

2. Remote Sense Connection used for Compensation

Notes:

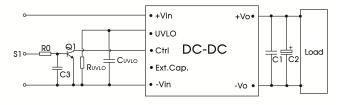

Using remote sense with long wires may cause unstable output, please contact technical support if long wires must be used.
 PCB-tracks or cables/wires for Remote Sense must be kept as short as possible. Twisted pair or shielded wires are suggested for remote compensation and must be kept as short as possible.

(3) We recommend using adequate cross section for PCB-track layout and/or cables to connect the power supply module to the load in order to keep the voltage drop below 0.3V and to make sure the power supply's output voltage remains within the specified range.
(4) Note that large wire impedance may cause oscillation of the output voltage and/or increased ripple. Consult technical support or factory for further advice of sense operation.

Design Reference

1. Ripple & noise

All the DC-DC converters of this series are tested before delivery using the recommended circuit shown in Fig. 3.


2. Typical application

1. Mornsun EMC circuit is recommended, otherwise please ensure that at least a 100µF electrolytic capacitors is connected at the input in order to ensure adequate voltage surge suppression and protection.

2. Output ripple can be further reduced by appropriately increasing the output capacitor values C3 and/or by selecting capacitors with a low ESR (equivalent series resistance). Also make sure that the capacitance is not exceeding the specified max. capacitance load value of the product.

3. The UVLO pin can adjust the point of input under-voltage protection by the external resistance RUVLO. Please refer to Fig.9 for the value of RUVLO, if the pin is left open, the under-voltage protection point is 11V.

4. Ctrl current-mode logic recommended circuit design refer to fig.4.

Components	Value	Recommended Component				
RO	10Κ Ω					
C3	0.1µF	voltage≥25V				
Q1 Ic≥10mA voltage≥30V						
Note: \$1 pin open, DC-DC ON.						

Fig.4

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

2023.01.12-A/3 Page 6 of 12

MORNSUN®

2.5 * R.

3. Trim Function for Output Voltage Adjustment (open if unused)

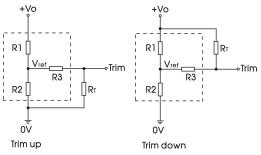


Fig.5

Trim resistor connection (dashed line shows internal resistor network)

Trim up : $R_T = \frac{a^* R_2}{a} - R_3$

rim up :
$$R_{T} = \frac{a + R_{2}}{R_{2} - a} - R_{3}$$
 $a = \frac{a + R_{3}}{Vo - 2.5}$

Calculation formula of Trim resistance:

Trim down: $R_T = \frac{b^* R_1}{R_1 - b} - R_3$ $b = \frac{(Vo - 2.5)^* R_2}{2.5}$

Note:

a, b: self-defined parameter, accurate to two decimal places. $R_1(k_\Omega)$: Resistance of Trim.

Vo: Output voltage change. V_{ref}(VDC): Reference voltage.

Vo Res	12(VDC)	15(VDC)	24(VDC)	28(VDC)	48(VDC)	54(VDC)
R1(KΩ)	11	14.35	24.8	28.8	54	61
R2(K Ω)	2.87	2.87	2.87	2.87	2.94	2.94
R3(K Ω)	20.2	20.2	23.1	23.1	18.2	18.2

Practical Example trim up -10% for 12V output:

$$b = \frac{(10.8 - 2.5) \cdot 2.87}{2.5} = 9.53$$
$$R_{T} = \frac{9.53 \cdot 11}{11 - 9.53} - 20.2 = 51.113 \text{K}\Omega$$

RT according to E24 \approx 51 k Ω

4. EMC compliance circuit

1. The anti-reverse connection circuit is composed of a circuit breaker and a diode D1. The withstand voltage of the diode D1 must be greater than 250V;

2. The EMC filter part is composed of modular circuits. Please refer to Figure 6 for recommended circuits and parameters. Self-built circuits can also be used;

3. Resistor RUVLO is used to adjust the input under-voltage protection point. Refer to Figure 9 for the value.

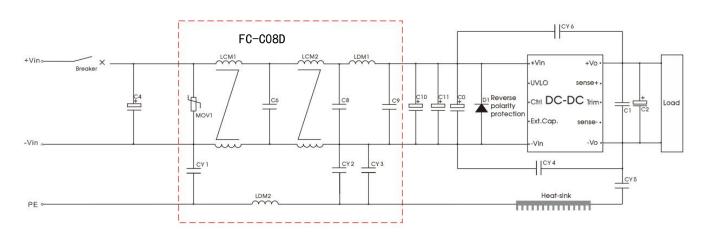


Fig.6

MORNSUN Guangzhou Science & Technology Co., Ltd.

2023.01.12-A/3 Page 7 of 12 MORNSUN Guangzhou Science & Technology Co., Ltd. reserves the copyright and right of final interpretation

Practical Example trim up +10% for 12V output: 2.5*11

$$a = \frac{2.571}{13.2 - 2.5} = 2.57$$

$$R_{T} = \frac{2.57 + 2.87}{2.87 - 2.57} - 20.2 = 4.386 K\Omega$$
R_T according to E24 ≈ 4.3k Ω

Components Value Matching Power output voltage	C4	C2	C1	CY4, CY5, CY6	DI
12V	330µF		1μF Voltage≥1.2*Vo	3300 pF /400VAC Y1 safety capacitor	20A Voltage≥200V
15V	Voltage≥200V	330µF Voltage≥1.2*Vo			
24V	560µF Voltage≥200V				
28V					
48V					
54V	-				
Breaker				nust be selected in acconverter, but not exc	

Note: A ferrite core on the power lines and load lines can ensures a better EMI test margin.

EMC Filter Value **Recommended Component** Components C6 0.1µF Voltage≥630V Voltage≥250V C8 0.22µF C9 Voltage≥250V 2.2µF LCM1 ≧2mH FL2D-A2-202 Common mode, $\geq 4mH$, LCM2 ≧4mH 35mΩ, -40 to +125°C LDM1 0.47µH Shielding Inductive Differential mode, 150uH \pm 35%, 30m Ω , LDM2 150µH -40 to +125°C 2200 pF /400VAC CY1, CY2 Y1 safety capacitor CY3 1000 pF /400VAC Y1 safety capacitor MOV1 7D221K Varistor

Note: The emc filter recommended to use MORNSUN P/N: FC-C08D.

Surge standard	Components	Value	Recommended Component
line to line ±1KV (42 Ω , 0.5 μ F)	CO	100µF	Voltage≥250V
line to ground ±2kV (42 Ω , 0.5 μ F)	C10, C11		
line to line ±1KV (2 Ω , 18 μ F)	C0, C10	100µF	Voltage≥250V
line to ground ±2kV (12 Ω , 9 μ F)	C11		
line to line ±2KV (2 Ω , 18 μ F) line to ground ±2kV (2 Ω , 18 μ F)	C0, C10, C11	100µF	Voltage≥250V

5. Hold-up time setup capacitor

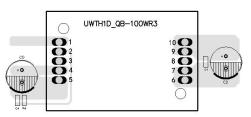


Fig.7 Recommended circuit and PCB layout for hold-up time

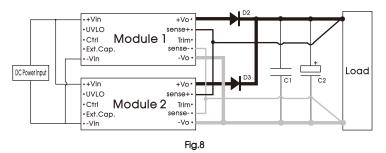
The hold-up time capacitor $C_{\text{Ext. Cap}}$ is used to hold the output when the input power off. Note:

1. If there is no requirement for the hold-up time, no additional capacitor $C_{\text{Ext. Cap}}$ is required;

2. For the hold-up time of 10ms and 30ms, please refer to table blow;

3. Vq is Start-up voltage;

MORNSUN®

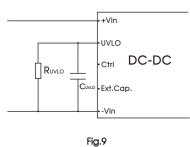

MORNSUN Guangzhou Science & Technology Co., Ltd.

4. CExt. cap withstand voltage is greater than \ge 100V.

Po (W)		100							
Vin (V)		24	36	48	72	96	110		
Vq	V _q (V)		19.5	26.9	40.3	53.4	61.1		
	∆t: 10ms	470	470	470	470	470	470		
CExt. Cap (µF)	∆t: 30ms	1410	1410	1410	1410	1410	1410		

6. Recommended circuit for multi-module parallel redundant design

Note:


1. The function of capacitor C1, C2 is filtering. It is used for margin design and cannot be used to increase power;

2. The diodes D2 and D3 are used to protect the power module. In actual use, the user can choose the parameters of the diode or MOSFET according to the output current;

3. Because the output impedance of the two modules is different, the output power of each module cannot be guaranteed to be equal; Pload = P1 + P2 < Pmax (100W).

7. UVLO Function and RUVLO Values

The products with an ultra-wide input voltage range, covering a variety of nominal input voltages. Set the input under-voltage point adjustable function for different input systems, connect a resistor between UVLO pin and -Vin, adjust the under-voltage point of the product by adjusting the resistor value.

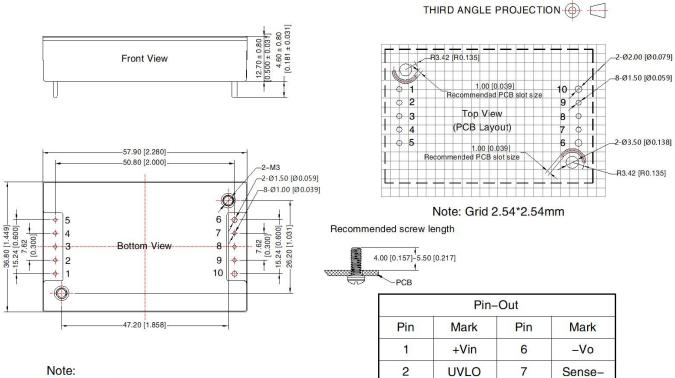
UVLO values for various nominal input voltage and R_{UVLO} table

Nominal input voltage (V)	24	36	48	72	96	110
Starting Voltage (V)	13.2	19.5	26.9	40.3	53.4	61.1
Shutdown Voltage (V)	11.2	16.7	23.3	34.8	46.3	53.1
UVLO setup resistance (K Ω)	open	150	56.1	18.3	5.6	1.5
UVLO setup calculation	100nF/50V/0805					

Calculation formula of RUVLO setup resistance :

$$R_{\text{UVLO}} = \frac{182 \text{ °c}}{182 \text{ ~c}} - 20 \quad C = \frac{1272.35}{V_{\text{shutdown}} - 6.45}$$

Note: c: self-defined parameter. $R_{UVLO}(K\,\Omega\,)$: UVLO setup resistance. $V_{shutdown:}$ UVLO shutdown voltage.


8. For additional information please refer to DC-DC converter application notes on <u>www.mornsun-power.com</u>

MORNSUN Guangzhou Science & Technology Co., Ltd.

MORNSUN®

Dimensions and Recommended Layout (without heat sink)

3

4

5

Ctrl

Ext. Cap.

-Vin

8

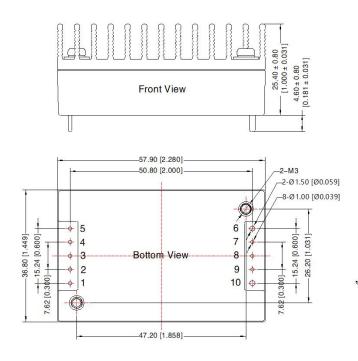
9

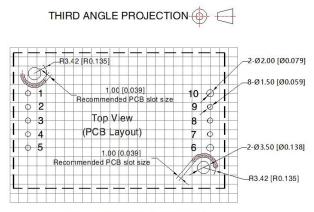
10

Trim

Sense+

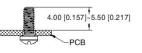
+Vo


Note.
Unit: mm[inch]
Pin1, 2, 3, 4, 5, 7, 8, 9's diameter: 1.00 [0.039]
Pin6, 10's diameter: 1.50 [0.059]
Pin diameter tolerances: $\pm 0.10 [\pm 0.004]$
General tolerances: ±0.50 [±0.020]
Mounting hole screwing torque: Max 0.4 N • m


MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

MORNSUN[®]


Dimensions and Recommended Layout (with H heat sink)

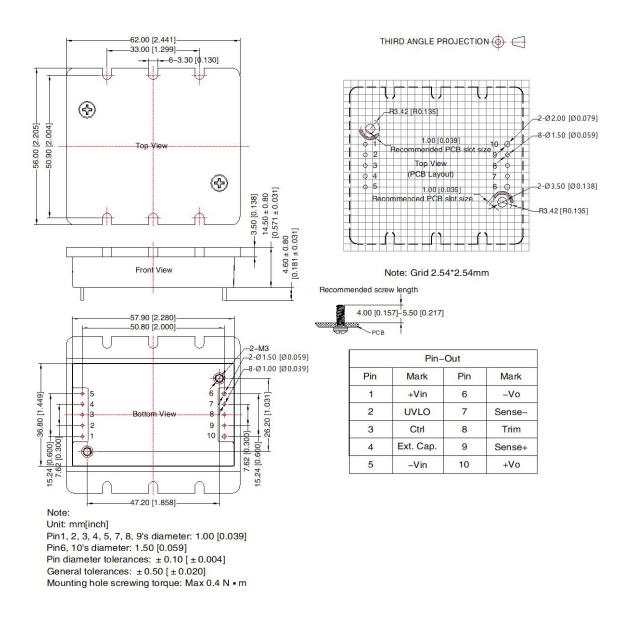
Note: Grid 2.54*2.54mm

Recommended screw length

	Pin-Out							
Pin	Mark	Pin	Mark					
1	+Vin	6	–Vo					
2	UVLO	7	Sense-					
3	Ctrl	8	Trim					
4	Ext. Cap.	9	Sense+					
5	–Vin	10	+Vo					

Unit: mm[inch] Pin1, 2, 3, 4, 5, 7, 8, 9's diameter: 1.00 [0.039] Pin6, 10's diameter: 1.50 [0.059] Pin diameter tolerances: $\pm 0.10 [\pm 0.004]$ General tolerances: $\pm 0.50 [\pm 0.020]$ Mounting hole screwing torque: Max 0.4 N \cdot m

MORNSUN[®]


Note:

MORNSUN Guangzhou Science & Technology Co., Ltd.

2023.01.12-A/3 Page 11 of 12 MORNSUN Guangzhou Science & Technology Co., Ltd. reserves the copyright and right of final interpretation

MORNSUN[®]

Dimensions and Recommended Layout (with F heat sink)

Note:

- 1. For additional information on Product Packaging please refer to www.mornsun-power.com. Packaging bag number: 58010113(UWTH1DxxQB-100WR3); 58220017(UWTH1DxxQB-100WHR3); 58200069(UWTH1DxxQB-100WFR3);
- 2. The maximum capacitive load offered were tested at input voltage range and full load;
- 3. Unless otherwise specified, data in this datasheet should be tested under the conditions of Ta=25°C, humidity<75%RH with nominal input voltage and rated load;
- 4. All index testing methods in this datasheet are based on our company corporate standards;
- 5. Product customization is available, please contact below email directly for specific needs;
- 6. Products are related to laws and regulations: see "Features" and "EMC";
- 7. Our products shall be classified according to ISO14001 and related environmental laws and regulations, and shall be handled by qualified units.

Mornsun Guangzhou Science & Technology Co., Ltd.

Address: No. 5, Kehui St. 1, Kehui Development Center, Science Ave., Guangzhou Science City, Huangpu District, Guangzhou, P. R. ChinaTel: 86-20-38601850Fax: 86-20-38601272E-mail: info@mornsun.cnww.mornsun-power.com

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

2023.01.12-A/3 Page 12 of 12