

150W isolated DC-DC converter
Ultra-wide input and regulated single output

FEATURES

- Ultra-wide 4:1 input voltage range
- High efficiency up to 91%
- I/O isolation test voltage 2.25k VDC
- Input under-voltage protection, output short-circuit, over-current, over-voltage, over-temperature protection
- Operating ambient temperature range: -40°C
 ~ +85°C
- Five-sided metal shielded package
- Industry standard ¼-Brick package and pin-out
- EN62368 approved

URF48_QB-150W(F/H)R3 series are isolated 150W DC-DC products with 4:1 input voltage. They feature efficiency up to 91%, 2250VDC input to output isolation, operating ambient temperature of -40°C ~ +85°C, input under-voltage, output short circuit, over-current, over-voltage over-temperature protection. The products meet CLASS A of CISPR32/EN55032 EMI standards by adding the recommended external components and they are widely used in applications such as battery powered systems, industrial controls, electricity, instrumentation, railway, communication and intelligent robotic.

Selection Guide									
		Input Voltage (VDC)		Output		Full Load	.,		
Certification	Certification Part No. [™]		Max.®	Voltage(VDC)	Current (A)(Max.)	Efficiency(%) Min./Typ.	Max. Capacitive Load(µF)		
	URF4805QB-150W(F/H)R3	48 (18-75)		5	30	86/88	6000		
	URF4812QB-150W(F/H)R3			12	12.5	89/91	2000		
CE	URF4815QB-150W(F/H)R3				80	15	10	87/89	2000
_	URF4824QB-150W(F/H)R3			24	6.25	89/91	1000		
	URF4848QB-150W(F/H)R3			48	3.13	89/91	450		

Note:

①Use "F" suffix is for added aluminum baseplate and "H" suffix for heat sink mounting. We recommend to choose modules with a heat sink for enhanced heat dissipation and applications with extreme temperature requirements;

 $\ensuremath{{\mathbb Q}} \textsc{Exceeding}$ the maximum input voltage may cause permanent damage.

Input Specifications					
Item	Operating Conditions	Min.	Тур.	Max.	Unit
Input Current (full load/no-load)	Nominal input voltage		3512/100	3634/200	A
Reflected Ripple Current	Nominal input voltage		100		mA
Surge Voltage (1sec. max.)		-0.7		90	
Start-up Threshold Voltage		-	-	18	VDC
Input Under-voltage Protection		14	16	-	
Input Filter		Pi filter			
	Module on	Ctrl pin	Ctrl pin open or pulled high (3.5-12VDC)		
Ctrl*	Module off	Ctrl pi	Ctrl pin pulled low to GND (0-1.2V		VDC)
	Input current when off	_	2	10	mA
Hot Plug		Unavailable			
Note: *The Ctrl pin voltage is reference	ed to input GND.	'			

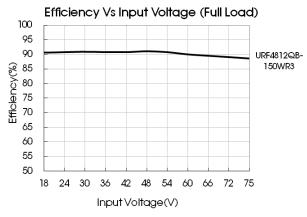
MORNSUN®

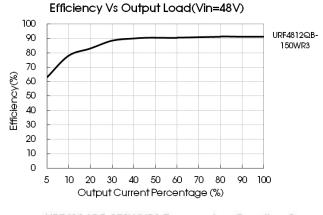
MORNSUN GUANGZHOU SCIENCE & TECHNOLOGY CO.,LTD.

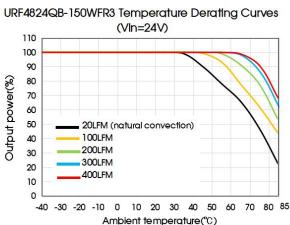
Item	Operating Conditions		Min.	Тур.	Max.	Unit
Voltage Accuracy	0%-100% load			±1	±3	
Linear Regulation	Input voltage variation fro	om low to high at full load		±0.2	±0.5	%
Load Regulation	5%-100% load	5%-100% load		±0.5	±0.75	
Transient Recovery Time	25% load step change	25% load step change		300	500	μs
Transient Response Deviation	25% load step change	5V output		±3	±7.5	%
		others		±3	±5	
Temperature Coefficient	Full load			-	±0.03	%/℃
Ripple & Noise*	20MHz bandwidth			150	250	mVp-p
Over-voltage Protection					160	%Vo
Over-current Protection	Input voltage range	110	130	150	%lo	
Short-circuit Protection			Hiccup, continuous, self-recovery			

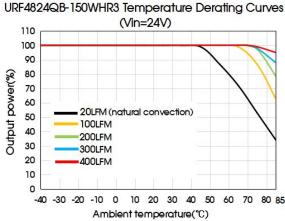
General Specification	ns .					
Item	Operating Cond	Operating Conditions			Max.	Unit
	Input-output	FI 0	2250	-		
Isolation	Input-case	Electric Strength Test for 1 minute with a leakage current of 5mA max	1500			VDC
	Output-case	Will a leakage editeril of officeriax	500			
Insulation Resistance	Input-output resis	stance at 500VDC	100			$\mathbf{M} \Omega$
Isolation Capacitance	Input-output cap	pacitance at 100KHz/0.1V		2200		рF
Trim					110	%Vo
Sense					105	%VO
Operating Temperature					+85	
Storage Temperature					+125	
Over-temperature Protection	Max. Case Temp	Max. Case Temperature			120	$^{\circ}$
Pin Soldering Resistance	Wave-soldering, 10 seconds			-	260	
Temperature	Soldering spot is 1.5mm away from case for 10 seconds		·	-	300	
		URF48xxQB-150WR3		-	7.5	°C/W
Thermocouple	Natural convecti (20LFM)	on URF48xxQB-150WFR3		-	6.3	
	(ZOLI IVI)	URF48xxQB-150WHR3		-	5.2	
Storage Humidity	Non-condensing	5	-	95	%RH	
Vibration				/EN61373 tra	in 1B categ	ory
Switching Frequency	PWM mode	PWM mode			-	KHz
MTBF	MIL-HDBK-217F@2	MIL-HDBK-217F@25°C		-		K hours

Mechanical Specifications						
Case Material	Aluminum alloy case, black plastic be	Aluminum alloy case, black plastic bottom, flame-retardant and heat-resistant (UL94 V-0)				
	URF48xxQB-150WR3	61.8 x 40.2 x 12.7 mm				
Dimension	URF48xxQB-150WFR3	62.0 x 56.0 x 14.6 mm				
	URF48xxQB-150WHR3	61.8 x 40.2 x 27.7 mm				
	URF48xxQB-150WR3	89.0g(Typ.)				
Weight	URF48xxQB-150WFR3	109.0g(Typ.)				
	URF48xxQB-150WHR3	120.0g(Typ.)				
Cooling Method	Free air convection (20LFM)	Free air convection (20LFM)				

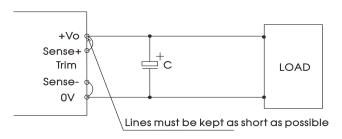

MORNSUN®


MORNSUN GUANGZHOU SCIENCE & TECHNOLOGY CO.,LTD.



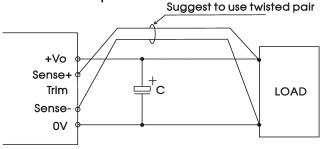

Electromo	agnetic Co	mpatibility (EMC)		
Engladana	CE	CISPR32/EN55032	CLASS A (see Fig. 2 for recommended circuit)	
Emissions RE		CISPR32/EN55032	CLASS A (see Fig. 2 for recommended circuit)	
	ESD	IEC/EN61000-4-2, EN50121-3-2	Contact ±6KV Air ±8KV	perf.Criteria B
	RS	IEC/EN61000-4-3, EN50121-3-2	10V/m	perf.Criteria A
	EFT	IEC/EN61000-4-4, EN50121-3-2	±2KV(see Fig. 2 for recommended circuit)	perf.Criteria A
Immunity	Surge	EN50121-3-2	differential mode ± 1 KV, 1.2/50us, source impedance 42 Ω (see Fig.2 for recommended circuit)	perf.Criteria B
	CS	IEC/EN61000-4-6, EN50121-3-2	10 Vr.m.s	perf.Criteria A

Typical Performance Curves


Notes:

1) Product application thermal design should be referred to the recommended PCB layout and recommended heat dissipation structure, please see DC-DC Converter Application Notes for specific operation.

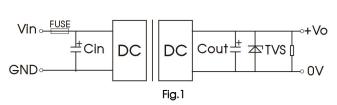
Remote Sense Application


1. Remote Sense Connection if not used

Notes:

- (1) If the sense function is not used for remote regulation, the user must connect the +Sense to + Vo and -Sense to 0V at the DC-DC converter pins.
- (2) The connections between Sense lines and their respective power lines must be kept as short as possible, otherwise they may be picking up noise, interference and/or causing unstable operation of the power module.

2. Remote Sense Connection used for Compensation


Notes:

- (1) Using remote sense with long wires may cause unstable output, please contact technical support if long wires must be used.
- (2) PCB-tracks or cables/wires for Remote Sense must be kept as short as possible. Twisted pair or shielded wire are suggested for remote compensation and must be kept as short as possible.
- (3) We recommend using adequate cross section for PCB-track layout and/or cables to connect the power supply module to the load in order to keep the voltage drop below 0.3V and to make sure the power supply's output voltage remains within the specified range.
- (4) Note that large wire impedance may cause oscillation of the output voltage and/or increased ripple. Consult technical support or factory for further advice of sense operation.

Design Reference

1. Typical application

- (1) We recommended using the recommended circuit shown in Fig.1 during product testing and application, otherwise please ensure that at least a 220µF electrolytic capacitors is connected at the input in order to ensure adequate voltage surge suppression and protection.
- (2) We recommened increasing the value of Cin and pay attention to the unstable input voltage if the product input side is paralleled with motor drive circuit and/or larger energy transient circuits, to ensure the stability of input terminal and avoid repeatedly start-up problems due to input voltage lower than undervoltage protection point.
- (3) We recomended increasing the output capacitance with limited to the capacitive load specification and/or increasing the voltage clamping circuit(such as TVS) if the output terminal is inductive device such as relay or a motor, to ensure adequate voltage surge suppression and protection.
- (4) Input and/or output ripple can be further reduced by appropriately increasing the input & output capacitor values Cin and Cout and/or by selecting capacitors with a low ESR (equivalent series resistance). Also make sure that the capacitance is not exceeding the specified max. capacitive load value of the product.

Vout(VDC)	Fuse	Cin*	Cout	TVS	
5	15A, slow blow		470µF	SMDJ6.0A	
12				SMDJ14A	
15		220	220µF	220µF	SMDJ17A
24			100.5	SMDJ28A	
48			100µF	SMDJ54A	

Note:

*Please pay attention to the ambient temperature of the product when using an external capacitor, increase the electrolytic capacitor values to at least 1.5 times the original parameter if the ambient temperature is low(such as -25°C).

2. EMC solution-recommended circuit

We recommended using the recommended circuit shown in Fig.2 during product EMC testing and application.

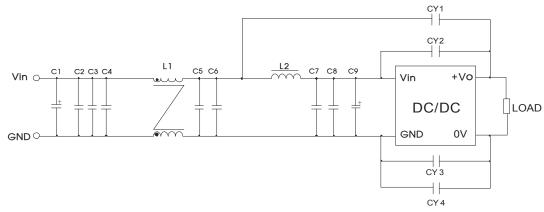
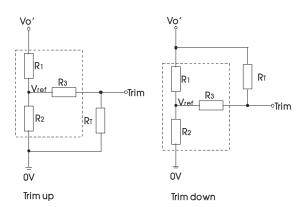



Fig. 2

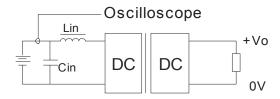
Components	Recommended Component value		
C1	150µF/100V electrolytic capacitor		
С9	47µF/100V electrolytic capacitor		
C2、C3、C4、C5、C6、C7、C8	2.2µF/100V ceramic capacitor		
LI	1.0mH/15A common mode inductor		
L2	1.5µH/15A inductance		
CY1, CY2, CY3, CY4	1nFY1 safety capacitor		

3. Trim Function for Output Voltage Adjustment (open if unused)

TRIM resistor connection (dashed line shows internal resistor network)

Calculation formula of Trim resistance:

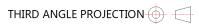
up:
$$RT = \frac{aR_2}{R_2 - a} - R_3$$
 $a = \frac{Vref}{Vo' - Vref} \cdot R_3$

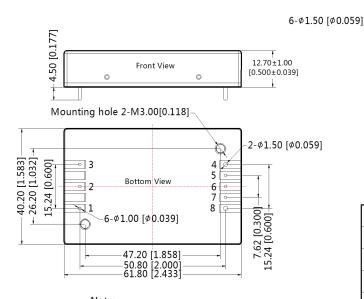

down:
$$R_1 = \frac{aR_1}{R_1-a} -R_3$$
 $a = \frac{Vo'-Vref}{Vref} \cdot R_2$

 R_T = Trim Resistor value; a = self-defined parameter Vo'= desired output voltage (±10% max.

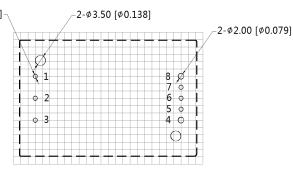
Vout(VDC)	R1(K Ω)	R2(K Ω)	R3(K Ω)	Vref(V)
5	3.036	3	10	2.5
12	11.00	2.87	15	2.5
15	14.03	2.8	15	2.5
24	24.872	2.87	15	2.5
48	53.017	2.913	15	2.5

Note: When using the Trim down function make sure that the RT resistor value is calculated correctly. If the Trim pin is shorted with +Vo, or its value is too low, then the output voltage Vo would be lower than 0.9Vo, which may cause the product to fail.


4. Reflected ripple current--test circuit

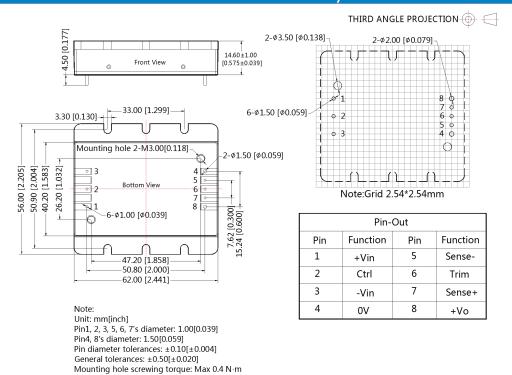


Note:Lin(4.7 μ H) , Cin(220 μ F, ESR < 1.0 Ω at 100 KHz)

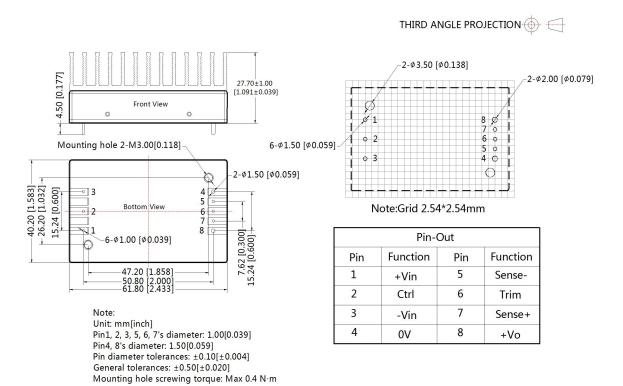

- 5. The products do not support parallel connection of their output.
- 6. We recommended the use of a converter with higher output power capability to cover applications with higher power requirements.
- 7. For additional information please refer to application notes on www.mornsun-power.com

URF48xxQB-150WR3 Dimensions and Recommended Layout

Note:
Unit: mm[inch]
Pin1, 2, 3, 5, 6, 7's diameter: 1.00[0.039]
Pin4, 8's diameter: 1.50[0.059]
Pin diameter tolerances: ±0.10[±0.004]
General tolerances: ±0.50[±0.020]
Mounting hole screwing torque: Max 0.4 N·m



Note:Grid 2.54*2.54mm


Pin-Out						
		- Cut				
Pin	Function	Pin	Function			
1	+Vin	5	Sense-			
2	Ctrl	6	Trim			
3	-Vin	7	Sense+			
4	0V	8	+Vo			

URF48xxQB-150WFR3 Dimensions and Recommended Layout

URF48xxQB-150WHR3 Dimensions and Recommended Layout

Note:

- 1. For additional information on Product Packaging please refer to www.mornsun-power.com. Packaging bag number: 58010113(URF48xxQB-150WR3), 58200069(URF48xxQB-150WFR3), 58220017(URF48xxQB-150WHR3);
- 2. The maximum capacitive load offered were tested at input voltage range and full load;
- 3. Unless otherwise specified, data in this datasheet should be tested under the conditions of Ta=25°C, humidity<75%RH with nominal input voltage and rated load;
- 4. All index testing methods in this datasheet are based on our company corporate standards;
- 5. We can provide product customization service and match filter module;
- 6. Products are related to laws and regulations: see "Features" and "EMC";
- 7. Our products shall be classified according to ISO14001 and related environmental laws and regulations, and shall be handled by qualified units.

Mornsun Guangzhou Science & Technology Co., Ltd.

Address: No. 5, Kehui St. 1, Kehui Development Center, Science Ave., Guangzhou Science City, Huangpu District, Guangzhou, P. R. China Tel: 86-20-38601850 Fax: 86-20-38601272 E-mail: info@mornsun.cn www.mornsun-power.com

MORNSUN®

MORNSUN GUANGZHOU SCIENCE & TECHNOLOGY CO.,LTD.