

EV Charger Residual Current Transducer TLB6-A1TDM(K)

RoHS

Features

- Open-loop, fluxgate-based current transducer
- Meet IEC 62752: 2018 (IC-CPD)
- Meet IEC 62955: 2018 (RDC-PD)
- Meet the requirements of AC 30mA and DC 6mA residual current detection
- PCB installation, easy for using
- 3,000 A surge current capability

TLB6-A1TDM(K) is a residual current transducer for EV charger. It can be widely used in the electric vehicle charger industry. It uses fluxgate detection technology to detect DC, AC, and various pulsating residual currents. The module meets the residual current requirements of IEC62752 (mode 2) and IEC62955 (mode 3) testing standards. It can detect 6mA DC residual current. The trigger is sensitive and responds to leakage events in time.

Selection G	uide				
Part No.	Input Voltage	Rated DC Residual Current	Rated AC Residual Current	Rated current	Static Power Dissipation
TLB6-A1TDM	5VDC	6mA	30mA	40A	0.25W
TLB6-A1TDMK	5VDC	6mA	30mA	40A	0.25W

Note: TLB6-A1TDMK enhances magnetic shielding performance.

Electrical Characteristics					
Item	Symbol	Min	Тур	Max	Unit.
Rated Residual DC Operating Current	IANDC		6		mA
Rated Residual AC Operating Current	IANAC		30		mA
Range of Remaining DC Operating Current	I∆NDC-RANGE	3		6	mA
Range of Remaining AC Operating Current	I∆NAC-RANGE	15		30	mA
Maximum Residual Current Measurement Range	IARANGE		±300		mA
Input Voltage	Vcc	4.85	5	5.15	V
Static Operating Current	_		30	45	mA
Rated current	l _P		32	40	Α

Item	Symbol	Min	Тур	Max	Unit.
Calibration Input Low Level Voltage	Vcalil	0		1	٧
Calibration Input High Level Voltage	Vcalih	4		5.15	٧
Error Output Low Level Voltage	VERROR-OUT OL	0		0.6	V
Error Output High Level Voltage	VERROR-OUT OH			High impedance	
Operating Output Low Level Voltage	VDC-OUT/ AC-OUT OL	0		0.6	V
Operating Output High Level Voltage	VDC-OUT/ AC-OUT OH			High impedance	
PWM Output Duty Ratio	Spwm-out	3	3.3	3.6	%/mA
Frequency of PWM Output Duty Ratio	f PWM-OUT	7.8	8	8.2	kHz
Error Output Delay Time	T _{ERROR-OUT}	150			ms
Calibration Input Low Pulse Time Limit	T _{CALIL}		40		ms
Calibration Input High Pulse Time Limit	T _{CALIL}		1.2	-	S

Perform	ance Character	istic				
ltem	Symbol	Residual Current Waveform	Min	Тур	Max	Unit.
	IANAC50	Frequency 50Hz AC	15	22.5	30	mA RMS
	IANAC1000	Frequency 1000Hz AC		300		mA RMS
	IANAO	0 Angle Pulsating DC	11	15	30	mA RMS
Residual	I _Δ NA90	90 Angle Pulsating DC	10	15	30	mA RMS
operating	I _Δ NA135	135 Angle Pulsating DC	10	15	35	mA RMS
current	I _A NS-DC	Smooth DC	3	4.5	6	mA RMS
	I _{AN2PDC}	Two Phase Rectification DC	3.5	5	7	mA RMS
	I _A N3PDC	Three Phase Rectification DC	3.1	4.5	6.2	mA RMS
	IAIC-CPD	IC-CPD Current	18	28	38	mA RMS
	T∆NAC50@30mA	RMS 30mA Frequency 50Hz AC		55	70	ms
	T _{\(\Delta\)NAC50@60mA}	RMS 60mA Frequency 50Hz AC		30	35	ms
	T∆NAC50@150mA	RMS 150mA Frequency 50Hz AC		15	20	ms
	T∆NA0@42mA	RMS 42mA 0 Angle Pulsating DC		38	50	ms
	T∆NA0@84mA	RMS 84mA 0 Angle Pulsating DC		30	40	ms
	T _{\(\Delta\NA0@210mA\)}	RMS 210mA 0 Angle Pulsating DC		25	35	ms
	T∆NA0@42mA+S-DC@6mA	RMS 42mA 0 Angle Pulsating DC with 6mA Smooth DC		38	50	ms
	T∆NA0@84mA+S-DC@6mA	RMS 84mA 0 Angle Pulsating DC with 6mA Smooth DC		30	40	ms
	T∆NA0@210mA+S-DC@6mA	RMS 210mA 0 Angle Pulsating DC with 6mA Smooth DC		25	35	ms
	T∆NA90@42mA	RMS 42mA 90 Angle Pulsating DC		38	50	ms
	T∆NA90@84mA	RMS 84mA 90 Angle Pulsating DC		30	40	ms
	T∆NA90@210mA	RMS 210mA 90 Angle Pulsating DC		25	35	ms
	T∆NA90@42mA+S-DC@6mA	RMS 42mA 90 Angle Pulsating DC with 6mA Smooth DC		38	50	ms
	T∆NA90@84mA+S-DC@6mA	RMS 84mA 90 Angle Pulsating DC with 6mA Smooth DC		30	40	ms
	T∆NA90@210mA+S-DC@6mA	RMS 210mA 90 Angle Pulsating DC with 6mA Smooth DC		25	35	ms
Response	T∆NA135@42mA	RMS 42mA 135 Angle Pulsating DC		38	50	ms
time	T∆NA135@84mA	RMS 84mA 135 Angle Pulsating DC		30	40	ms
	T _{△NA135@210mA}	RMS 210mA 135 Angle Pulsating DC		25	35	ms
	T∆NA135@42mA+S-DC@6mA	RMS 42mA 135 Angle Pulsating DC with 6mA Smooth DC		38	50	ms
	T∆NA135@84mA+S-DC@6mA	RMS 84mA 135 Angle Pulsating DC with 6mA Smooth DC		30	40	ms
	T∆NA135@210mA+S-DC@6mA	RMS 210mA 135 Angle Pulsating DC with 6mA Smooth DC		25	35	ms
	T∆NS-DC@6mA	6mA Smooth DC		120	200	ms
	T∆NS-DC@60mA	60mA Smooth DC		25	30	ms
	T _{\(\Delta\NS-DC@300mA\)}	300mA Smooth DC		25	30	ms
	T∆N2PDC@6mA	RMS 6mA Two Phase Rectification DC		120	200	ms
	T∆N2PDC@60mA	RMS 60mA Two Phase Rectification DC		25	30	ms
	T _{\(\Delta\N2\PDC@300mA\\)}	RMS 300mA Two Phase Rectification DC		25	30	ms
	T _{\(\Delta\N3\PDC\@6\mA\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\}	RMS 6mA Three Phase Rectification DC		120	200	ms
	T _{\(\Delta\N3\PDC\@60mA\\)}	RMS 60mA Three Phase Rectification DC		25	30	ms
	T _{\(\Delta\N3PDC@300mA\)}	RMS 300mA Three Phase Rectification DC		25	30	ms
	T _{\(\Delta\)NF@210mA}	RMS 210mA Composite Current		15	25	ms
	T _{ΔIC-CPD@210mA}	RMS 210mA IC-CPD Current		15	25	ms

Isolation Characteristics					
Item	Operating Conditions	Min	Тур	Max	Unit.
Isolation Voltage	Primary edge input, secondary output; 50Hz, 1min; leakage current<1mA			4	kVAC
Pulse Withstand Voltage	1.2/50 µ s		5.5		kV
Insulation Resistance	500VDC	1			GΩ

General Characteristics					
Item	Symbol	Min	Тур	Max	Unit.
Operating Temperature	Ta	-40	-	85	$^{\circ}$
Storage Temperature	Ts	-40		105	$^{\circ}$
Weight (TLB6-A1TDM)	m	-	31		g
Weight (TLB6-A1TDMK)	m		37		g
Vibration		0-15	0Hz,5g (GB2423.10,1	EC60068-2-6)	<u> </u>
Overvoltage Category			OVC III (IEC61010)		

EMC				
Item		Specifications		
EMI	CE	CISPR32/EN55032	CLASS B	
EIVII	RE	CISPR32/EN55032	CLASS B	
	ESD	IEC/EN61000-4-2	Contact ±4kV, Air ±8kV	perf. Criteria B
ENAC	RS	IEC/EN61000-4-3	20V/m	perf. Criteria A
EMS	EFT	IEC/EN61000-4-4	±2kV	perf. Criteria B
	Surge Current	3000A, 8/20us		perf. Criteria B

Product Characteristic Curve

Pin	Descript	ion
Pin	Mark	Description
1	ERROR-O UT	Error output pin, when the pin is in the high impedance, it indicates that the system is faulty. At this time, the DC-OUT pin and the AC-OUT pin are also in the high impedance. If the system is normal, the pin is low level.
2	CAL	Calibration pin, when the pin input a low voltage of >40ms and <1.2s in duration, the product performs a calibration.
3	DC-OUT	DC action pin. Under the condition that the system is fault-free, the pin is low level when the DC residual current is less than 6mA; otherwise, the pin is high impedance. In addition, when the AC-OUT pin is in a high impedance, the pin is also set to a high impedance. See "Output pin truth Table".
4	AC-OUT	AC action pin. Under the condition that the system is fault-free, the pin is low level when the AC residual current is less

Pin	Descript	tion
Pin	Mark	Description
		than 30mA; otherwise, the pin is high impedance.
5	GND	Product-powered ground.
6	VCC	The product is powered by VCC, which requires a capacitor of 100nF and 1uF in parallel at the input end.
7	PWM-OU T	Duty ratio output pin. Output a square wave signal with 8kHz frequency, and the duty ratio varies with the input current by 3.3% per mA.
8	NC	Not connected.

Output Pin	Truth Table			
Pin	DC-OUT	AC-OUT	ERROR-OUT	Operating State
	Low level	Low level	Low level	System normal
Pin Output	High impedance	Low level	Low level	I∆NDC>6mA
State	High impedance	High impedance	Low level	I∆NAC>30mA
	High impedance	High impedance	High impedance	Error, system fault

Connection and Description

- 1. Two capacitors 1uF/16V and 100nF/16V need to be provided at VCC and GND for energy storage and decoupling. The value of inductance L is greater than 220 μ H.
- 2. DC action pin DC-OUT, AC action pin AC-OUT and duty ratio output pin PWM-OUT are usually connected to a microcontroller or to a power circuit to control back-end circuit breaker action.
- 3. The ERROR output pin ERROR-OUT, DC action pin DC-OUT, and AC action pin AC-OUT need to be connected to pull-up resistors R1, R2, and R3 respectively. 10 k Ω is recommended for pull-up resistors.
- 4. Calibration pin CAL is generally controlled by a microcontroller. See "Pin Description" for details.
- 5. Hot plug is unavailable.
- 6. The product should pay attention to level matching and use 5V MCU. If 3.3V MCU is used, the pull-up resistors R1, R2, and R3 need to be connected to a 3.3V power supply.

Timing Characteristics					
Item	Symbol	Min	Тур	Max	Unit.
Start-up to Operating time	T1			1200	ms
CAL Signal Low Level Maintenance Time	T2	40	300	1200	ms
CAL Calibration Duration	Т3		200		ms
Idn1 Test Signal Action Time (I _{DN1} =8mA)	T4		80		ms
Idn2 Test Signal Action Time (I _{DN2} =40mA)	T5		20	-	ms
Trip Signal Maintenance Time	T6		200		ms

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

Timing Application Design

Timing application design essentials:

- 1. After the power supply is fully started, the startup and stabilization time of the module is about 1200ms (T1). During this period, it is recommended that the whole system do not operate.
- 2. When performing signal calibration, the external signal sets the CAL pin to low level, and the recognition time (T2) of the CAL pin low level is about 300ms. After successful identification, signal calibration is carried out internally. The duration of the calibration was approximately 200ms (T3).
- 3. External input test current I_{DN1}, delay about 80ms (T4), DC-OUT pin output high impedance (trip signal); Then the test current is increased to I_{DN2}, and after a delay of about 20ms (T5), the DC-OUT pin and AC-OUT pin output high impedance (trip signal).
- 4. The test current input stops, and after a delay of about 200ms (T6), the DC-OUT pin and AC-OUT pin stop the output trip signal and output low level.

Dimensions and Recommended

THIRD ANGLE PROJECTION 🛛 🚭

8-03.00 [00.118]

80 [\$ 0.071]

F	Pin-Out
Pin	Mark
1	ERROR-OUT
2	CAL
3	DC-OUT
4	AC-OUT
5	GND
6	VCC
7	PWM-OUT
8	NC

PCB layout)

Notes:

- 1. For additional information on Product Packaging please refer to www.mornsun-power.com. Packaging bag number: 58240085;
- 2. All index testing methods in this datasheet are based on company corporate standards;
- 3. Unless otherwise specified, parameters in this datasheet were measured under the conditions of Ta=25 °C , humidity<75%RH with nominal input voltage;
- 4. We can provide product customization service, please contact our technicians directly for specific information;
- 5. This products is used in electronic equipment, please follow the operation and instructions of the manual, and use it in a standard and safe
- 6. Please do not install the product in a dangerous area; beware of the risk of electric shock during operating, some modules may generate dangerous voltages (such as primary wires);
- 7. This products is a build-in device, After installation, the conductive part must not be touched completely. A protective box or shield can be used:
- 8. It is strictly forbidden to disassemble and assemble the products privately to prevent equipment without failure or malfunction;
- 9. Our products shall be classified according to ISO14001 and related environmental laws and regulations, and shall be handled by qualified units.

MORNSUN Guangzhou Science & Technology Co., Ltd.

Address: No. 8 Nanyun 4th Road, Huangpu District, Guangzhou, China

Tel: 86-20-38601850 Fax: 86-20-38601272 E-mail: info@mornsun.cn www.mornsun-power.com