MORNSUN®

TDA51S485HC SOIC16 package isolated RS485 Transceiver

Features

- Ultra-small, ultra-thin, chip scale SOIC 16 package
- Compliant with TIA/EIA-485-A standard
- Wide input supply range: 3.15 V to 5.5 V
- Integrated high-efficiency DC-DC converter with on-chip transformer; With overload and short-circuit protection
- I/O power supply range supports 3.3V and 5V microprocessors
- High isolation to 5000Vrms
- Bus-Pin ESD protection up to 6kV(HBM)/15kV(contact)
- Baud rate up to 500kbps
- High CMTI:150kV/µs(typical)
- · Nanosecond communication delay
- 1/8 unit load—up to 256 nodes on a bus
- Bus fail-safe
- · Bus driver short circuit protection
- Industrial operating ambient temperature range: -40 $^\circ\!\!\mathbb{C}$ to +105 $^\circ\!\!\mathbb{C}$

Applications

- Industrial Automation
- Building Automation
- Smart Electricity Meter
- Remote Signal Interaction, Transmission

Functional Description

TDA51S485HC is a half-duplex enhanced transceiver designed for RS-485 data bus networks, which is fully compliant with TIA/EIA-485-A standard and is suitable for data transmission of up to 500kbps. Receivers have an exceptionally high input impedance, which places only 1/8 of the standard load on a shared bus and up to 256 transceivers.

The reliability design of A and B pin is emphasized, including driver output over current protection and enhanced ESD design. The ESD protection level of A, B pin can be up to 15kV (Human Body Model).

MORNSUN Guangzhou Science & Technology Co., Ltd.

2023.10.26-A/5 Page 1 of 11

Contents

1	Home	2	1
	1.1	Feature and Package	1
	1.2	Applications	1
	1.3	Functional Description	1
2	Pin C	onnection and Description	2
3	IC Re	elated Parameters	3
	3.1	Absolute Maximum Rating	3
	3.2	Recommended Operating Conditions	
	33	Electrical Characteristics	4

Pin Connection

Vcc 1 GND1 2 RXD 3	•	16 Viso 15 GND2 14 NC
RE 4 DE 5	TDA51S485HC	13 B 12 A
TXD 6		11 NC
GND1 7		10 SEL
GND1 8		9 GND2

Note: All GND₁ pins are internally connected. All GND₂ pins are internally connected.

Function Table

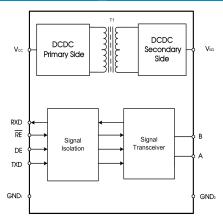
Letter	Description
н	High-Level
L	Low-Level
X	Unrelated
Z	High Impedance

Table 1. Driver	Function table
-----------------	----------------

TXD	DE	Output		
TXD		A	В	
н	н	н	L	
L	н	L	н	
X	L	Z	Z	
X	Open	Z	Z	
Open	н	н	L	
X	Х	Z	Z	

Table 2. Receiver Function table

Difference input VID = (VA – VB)	RE	RXD
-0.02 V \leqslant Vid	L	Н
-0.2 V < VID < -0.02V	L	Uncertain
V ID \leqslant -0.2 V	L	L
X	Н	Z
X	Open	Z


MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

	3.4 Transmission Information	5
	3.5 Physical Information	5
4	Test Circuits	5
5	Product Working Description	7
6	Application Circuit	7
7	Suggestions for Power Supply	7
8	Order Information	8
9	Package Information	9
10		10

10 Tape & Reel Information......10

Open	L	Н
Short	L	Н
Idle(terminYted) bus	L	Н

Note:

 $(1)\overline{\mathsf{RE}}$ =High when driving.

②DE=Low when receiving.

Pin Descriptions

Pin Number	Pin Name	Pin Functions
1	Vcc	Power supply. By using 0.1uF and 10uF ceramic capacitance ground(GND1).
2	GND ₁	Ground(Logic side).
3	RXD	Receiver output pin.
4	RE	Receiver enable input. When \overline{RE} is low, if $(A - B) \ge -20$ mV, then RXD = high. if $(A - B) \le -200$ mV, then RXD = low.
5	DE	Driver enable input. When DE is high, outputs are enabled. When DE is low, outputs are high impedance. Drive DE low and \overrightarrow{RE} high to enter shutdown mode.
6	TXD	Driver input pin.
7	GND1	Ground(Logic side).
8	GND1	Ground(Logic side).
9	GND ₂	Ground (Bus Side).
10	SEL ¹	V _{ISO} selection pin.
11	NC	No Connect.
12	А	RS485 Bus A Line.
13	В	RS485 Bus B Line.
14	NC	No Connect.
15	GND ₂	Ground (Bus Side).
16	V _{ISO}	Insulation power output. By using 0.1uF and 10uF ceramic capacitance ground(GND ₂).

Note: When SEL at VISO, VISO=5V; When SEL at GND₂ or floating, VISO=3.3V; When Vcc=3.3V, SEL must at GND₂ or floating; When vcc=5V, SEL is not restricted.

Absolute Maximum Ratings

General test conditions: Free-air, normal operating temperature range (Unless otherwise specified).

Parameters	Unit
Supply voltage V _{CC}	-0.5V to +6V
Input voltage V _{in}	-0.5V to V _{cc} +0.5V
Output current Io	-20mA to +20mA
Junction temperature T_J	< 150°C
Operating Temperature Range	-40°C to +105°C
Storage Temperature Range -65°C to +150°C	

Important: Exposure to absolute maximum rated conditions for an extended period may severely affect the device reliability, and stress levels exceeding the "Absolute Maximum Ratings" may result in permanent damage. Maximum voltage must not exceed 6 V.

Recommended Operating Conditions

Symbol	Recommended Operating Conditions	Min.	Тур.	Max.	Unit
Vcc	Supply voltage	3.15	3.3	5.5	
Vi	A, B pin Voltage	-7		12	
V _{ID}	A, B Differential input voltage	-12		12	V
V _{IH} High-level input voltage		2			
VIL	Low-level input voltage			0.8	
T _A	Operating temperature range	-40	25	105	°C
DR	Signaling rate			500	kbps

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Driver					I	
		No load, SEL at low or floating.	3.09	3.35	3.62	
Vod		No load, SEL at high	4.50	5.07	5.43	
VOD	Differential drive output	R _L =54Ω, Figure 7, SEL at low or floating.	1.17	1.4		
		R_L =54 Ω , Figure 7, SEL at high	1.9	2.5		
Vod3	Differential driver(With load) output	V _{test} = -7V to 12V, Figure6	1	1.4		V
ΔV_{OD}	Δ V _{OD} for complementary output states	$R_L=54\Omega$, Figure 7	-0.2		0.2	
Voc	Common-Mode output voltage	$R_L=54\Omega$, or $R_L=100\Omega$ Figure 7	1		3	
ΔVoc	Δ V _{oc} for complementary output states	R_L =54 Ω , or R_L =100 Ω Figure 7			0.2	
VIH	High input threshold voltage	TXD, DE, RE	2			
VIL	Low input threshold voltage	TXD, DE, RE			0.8	
lı∟	Input leakage current	TXD, DE, RE=0 or 1	-20		20	uA
loz	High-impedance output leakage	DE=0, RE=0,V _{CC} =0 or 5V,V _{IN} =12V		60	100	uA
102	current	DE=0, RE=0, V_{CC} =0 or 5V, V_{IN} =-7V	-100	-60		u.~
I _{OS1}	Output short-circuit current(V ₀ =HIGH)	DE= RE=1, TXD=1, V _A =-7 V, V _B =12 V	29	44	62	mA
los2	Output short-circuit current(V ₀ =LOW)	DE= RE=1, TXD=0, V _A =-7 V, V _B =12 V	29	44	62	mA
CMTI	Common mode transient immunity	V _{CM} = 1200V; Figure 12	100	150		kV/µS
Cı	Input capacitance	$V_{I} = V_{CC}/2 + 0.4 \times \sin(2\pi ft),$ f = 1 MHz, V _{CC} = 5 V		2		pF
Receiver						
VIT(+)	Positive differential input threshold voltage	-7 V ≤ V _{CM} ≤ +12 V		-100	-20	mV
VIT(-)	Negative differential input threshold voltage	$-7 \text{ V} \le \text{V}_{CM} \le +12 \text{ V}$	-200	-130		mV
Vhys	Hysteresis voltage (V _{IT+} – V _{IT-})	$-7 V \le V_{CM} \le +12 V$		30		mV
Vон	RXD output high voltage	I _{OUT} = 4 mA, V _A – V _B = 0.2 V	Vcc - 0.4	Vcc - 0.2		V
Vol	RXD output low voltage	$I_{OUT} = -4 \text{ mA}, V_A - V_B = -0.2 \text{ V}$		0.2	0.4	V
	Bus input current	V _A or V _B =12V, other pins connect to 0V		0.04	0.1	
		V _A or V _B =12V, power off , other pins connect to 0V		0.06	0.13	
lı		V_A or V_B =-7V, other pins connect to 0V	-0.1	-0.04		mA
		V_A or V_B =-7V, power off , other pins connect to 0V	-0.1	-0.03		
Іін	Input high voltage leakage current (RE)	V _{IH} =2V			20	
I _{IL}	Input low voltage leakage current (RE)	V _{IH} =0.8V	-20			uA
Rid	Differential input resistance(A, B)	-7 V ≤ V _{CM} ≤ +12 V	384	430	478	kΩ
CD	Differential input capacitance	f = 1.5 MHz, Vpp=1V Sin Signal, measure C _D		7		pF
Cı	Input to ground capacitance	$V_1 = 0.4 \times \sin(2\pi ft), f = 1MHz$		2		pF
Power supply	and safeguard characteristic			1 1		
	Isolated power supply output	V _{cc} =5V, no load, SEL=0 or floating	3.17	3.35	3.53	V
V _{ISO}	voltage	V _{cc} =5V, no load, SEL=1	4.50	5.07	5.43	V
		No load, V _{CC} =3.3V, RE=0, DE=1, DI=0, SEL=0	10	15	19	
laa	Logic side supply current	,				
Icc	Logic side supply current	No load, V _{CC} =5.0V, RE=0, DE=1, DI=0, SEL=0	9	13	17	mA

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

		A, B with 54 Ω load, V _{cc} =3.3V,	62	69	76	
		RE=0, DE=1, DI=0, SEL=0				
		A, B with 54Ω load, V _{CC} =5V, RE=0, DE=1, DI=0, SEL=0	45	49	53	
		A, B with 54Ω load, V _{cc} =5V, RE=0, DE=1, DI=0, SEL=1	90	96	102	
		A, B with 100 Ω load, V _{CC} =3.3V, RE=0, DE=1, DI=0, SEL=0	50	55	60	
		A, B with 100 Ω load, V _{CC} =5V, RE=0, DE=1, DI=0, SEL=0	43	48	53	
		A, B with 100 Ω load, V _{CC} =5V, RE=0, DE=1, DI=0, SEL=1	69	74	79	
		A, B with 120Ω load, V _{cc} =3.3V, RE=0, DE=1, DI=0, SEL=0	45	50	55	
		A, B with 120 Ω load, V _{CC} =5V, RE=0, DE=1, DI=0, SEL=0	32	36	40	
		A, B with 120 Ω load, V _{CC} =5V, RE=0, DE=1, DI=0, SEL=1	69	68	72	
		A, B to GND ₁			±6	kV
	HBM	A, B to GND ₂			±8	kV
ESD		Other pin			±6	kV
	Contact	A, B to GND ₂			±15	kV
V _{IO}	Insulate voltage				5000	Vrms
R _{IO}	Insulate impedance		1			GΩ

Note:ESD indicators refer to the specifications for non electrified testing.

Transmission Characteristics

Symbol	Parameter	arameter Conditions		Тур.	Max.	Unit
-	Maximum data rate	Duty 40% ~ 60%			500	kbps
T _{PHL} , T _{PLH}	Driver propagation delay			16	48	ns
TPHL-TPLH	Driver skew (T _{PHL} - T _{PLH})			3	12.5	ns
T _R , T _F	Driver rise/fall time	R _{Diff} =54Ω , C _{L1} =C _{L2} =50pF		12	25	ns
t _{PZH} / t _{PZL}	Driver off enable propagation delay	Figure 8 Figure 11		28	90	ns
t _{PZH} / t _{PZL}	Driver on enable propagation delay			28	90	ns
Tphl, Tplh	Receiver propagation delay			80	165	ns
TPHL-TPLH	Receiver skew (T _{PLH} - T _{PHL})	$C_{L} = 15 pF Figure 9$		15	30	ns
T _R , T _F	Bus rise/fall time			2.5	4	ns
t _{PLH}	Receiver off enable propagation delay	R _{Diff} =54Ω, C _{L1} =C _{L2} =50pF		28	90	us
t _{PHL}	Receiver enable propagation delay	Figure 9 Figure 10		43	52	us

Physical Specifications

Parameters	Value				
Weight	0.4(Typ.)	g			

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

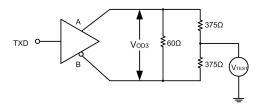
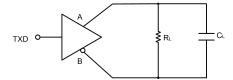
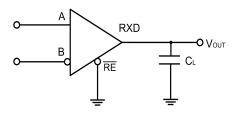
2023.10.26-A/5 Page 5 of 11

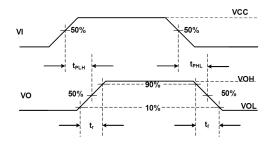
Note: Testing the condition burden capacitance including test to stretch forward and testing fixture parasitic capacitance. Testing semaphore upswing and droop to follow < 6ns, frequency100kHz, duty50%. resistance ZO = 54Ω.

TXD

VI

VOD


Figure 6. Driver test circuit, VOD with common-mode loading

Note:CL includes fixtures and a parasitic capacitor

Figure 8. Drive propagation delay test circuit and wave forms

2 2

 $\frac{R}{2}$

VOH

νοι

vcc

0V

VOH

<u>0V</u>

vcc

viso

0V_

0V

50%

90%

t_{PHZ}

50%

10%

50%

50%

t⊳

tf

Vod

Figure 7. Driver test circuit

90%

10%

50%

50%

50%

t_{PZH}

50%

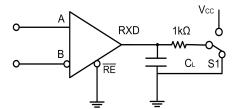
t_{PZL}

50%

50%

VI

vo


VI

vo

tr

Note:CL includes fixtures and a parasitic capacitor

Figure 9. Receiver propagation delay test circuit and wave forms

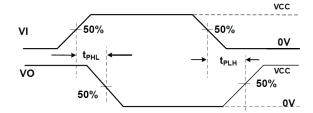
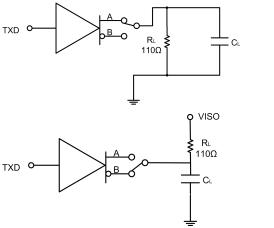



Figure 10. Receiver enable and off time test circuit

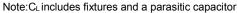


Figure 11. Driver enable and off time test circuit

MORNSUN Guangzhou Science & Technology Co., Ltd.

2023.10.26-A/5 Page 6 of 11

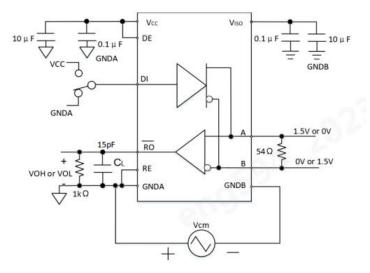


Figure 12. CMTI test circuit

Detailed Description

TDA51S485HC is a semi-duplex enhanced RS485 isolated transceiver with isolated power supply. In addition to an isolated power supply, each transceiver contains a drive and a receiver. The transceiver has a standby bus failure protection function to ensure that the receiver output is high when the receiver input is open, short, or when the bus is idle. The whole machine can monitor the overall working state of the module and limit the output high current, so as to prevent the bus overload or short circuit from causing non-recoverable damage to the transceiver.

Bus failure protection: In general, when -200mV < A - B < +50mV, the bus receiver will be in an indeterminate state. This phenomenon occurs when the bus is idle. Bus failure protection ensures that the receiver outputs a high level when the receiver input is open, short, or when the bus access port matches the resistance. TDA51S485HC receiver threshold voltage is relatively accurate, and the threshold voltage to the reference ground has a margin of at least +50mV, which can ensure that even if the bus differential voltage is 0V, the receiver output level is high, and meets the requirements of EIA/TIA-485 standard -200mV to +50mV.

The bus load capacity (256 point) : standard RS485 receiver input impedance is defined as $12 \text{ k}\Omega$ (unit load). A standard RS485 driver can drive at least 32 load units. TDA51S485HC bus receiver designed by 1/8 unit load, the input impedance is greater than 96 k Ω . As a result, the bus allows access to more transceivers (up to 256). TDA51S485HC can also be mixed with the standard RS485 transceiver with 32 unit loads (cumulative receiver load cannot exceed 32 units).

Drive output protection: TDA51S485HC avoids high output current and power consumption due to failures or bus collisions by two mechanisms, First overcurrent protection which provides fast short circuit protection throughout the common die range Second the thermal turn-off circuit forces the driver output into a low level when the core temperature exceeds the overtemperature reading value (typical value of 160°C).

Application Circuit

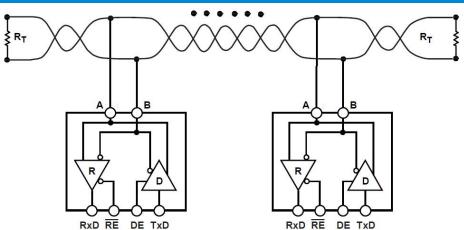


Figure13. Typical Application Circuit(Half-Duplex Network Topology)

MORNSUN Guangzhou Science & Technology Co., Ltd.

2023.10.26-A/5 Page 7 of 11

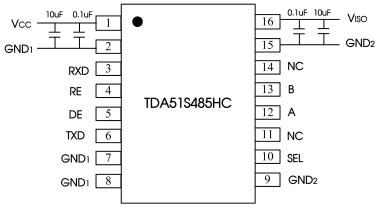
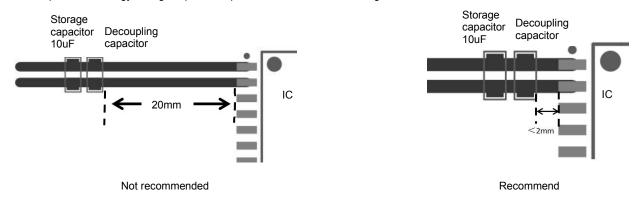



Figure14. Type PCB layout

PCB Design Instructions

1. The decoupling capacitors and energy storage capacitor of VCC and GND1, VISO and GND2 should be placed as close the chip pins as possible to the chip pins to reduce loop area and parasitic inductance of PCB traces. General control should be within 2mm. The decoupling capacitor is placed close the chip, and the energy storage capacitor is placed outside. As shown in Figre14-1.

2. The power line width should be designed at least 0.5mm when wiring.

3. When it is necessary to place vias in the power supply line and the ground wire, the position of the vias should be placed on the outside of the capacitor relative to the chip pins ,rather than between the capacitor and the chip, as shown in the figure 14-2 below to reduce the number of vias effect of parasitic inductance.

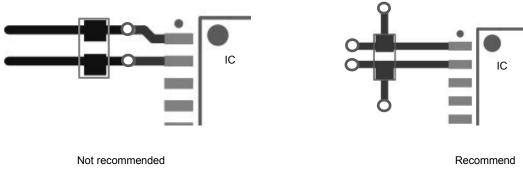


Figure14-2

MORNSUN Guangzhou Science & Technology Co., Ltd.

2023.10.26-A/5 Page 8 of 11

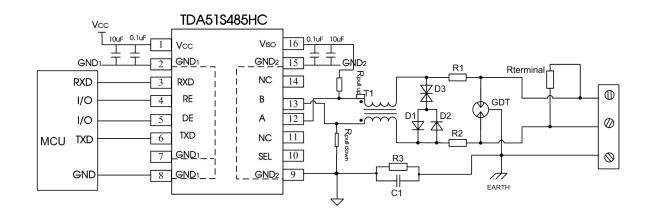


Figure 15. Port protection circuit for harsh environments

Recommended components and values:

Component	Recommended part, value	Component	Recommended part, value
R3	1ΜΩ	R1, R2	2.7Ω/2W
C1	1nF, 2kV	D1, D2	1N4007
T1	ACM2520-301-2P	D3	SMBJ8.5CA
GDT	B3D090L	R _{terminal}	120 Ω

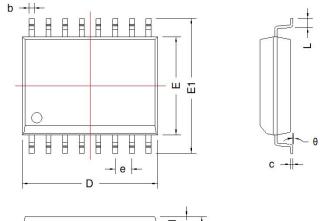
As the modules internal A / B lines come with its own ESD protection, which generally satisfy most application environments without the need for additional ESD protection devices. For harsh and noisy application environments such as motors, high voltage/current switches, lightning and similar however, we recommended that the user protects the module' s A / B lines with additional measures and external components such as TVS tube, common mode inductors, Gas discharge tube, shielded twisted pair of wires with the same single network Earth point. Figure 15 shows our recommended circuit diagram for such type of applications with components and values given in the table above. This recommendation is for reference only and may have to be adapted accordingly with appropriate component values in order to match the actual situation and application.

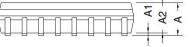
Note: Select the $R_{\mbox{terminal}}$ according to the actual application.

Using Suggests

To maintain A - B bus idle stability, we need at least one node will pull up A to V_{ISOIN} and drop down B to GND2 on the bus. Overall network at the same time pull up and drop down resistance of the parallel value must around 380 Ω to 420 Ω (0.2W).

Ordering Information

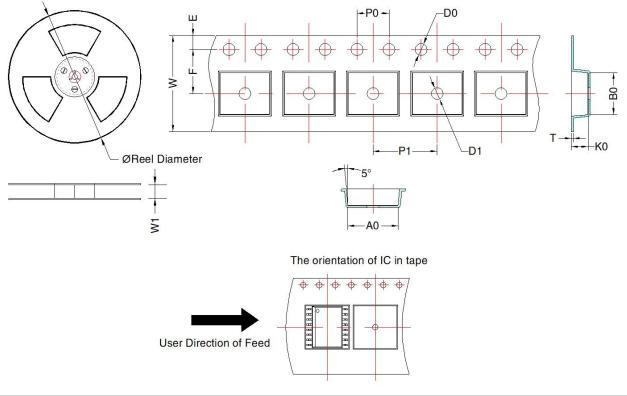

Part number	Part number Package		Product marking	Tape & Reel
TDA51S485HC	SOIC	16	TDA51S485HC	1k/REEL



MORNSUN Guangzhou Science & Technology Co., Ltd.

2023.10.26-A/5 Page 9 of 11

THIRD ANGLE PROJECTION



101		SOIC-16	2)				
Mark	Dimensi	on(mm)	Dimension(inch)				
wark	Min	Max	Min	Max			
A	2.35	2.65	0.093	0.104 0.012			
A1	0.10	0.30	0.004				
A2	2.25	2.35	0.089	0.093			
D	10.2	10.4	0.402	0.409 0.299			
E	7.4	7.6	0.291				
E1	10.1	10.5	0.340	0.413			
L	0.55	0.85	0.022	0.033			
b	0.35	0.43	0.014	0.017			
е	1.27	TYP	0.05	ТҮР			
С	0.15	0.30	0.006	0.012			
θ	0°	8°	0°	<mark>8°</mark>			

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

2023.10.26-A/5 Page 10 of 11

Device	Package Type	MPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	T (mm)	W (mm)	E (mm)	F (mm)	P1 (mm)	P0 (mm)	D0 (mm)	D1 (mm)
TDA51S485HC	SOIC-16	1000	330.0	16.4	10.9 ± 0.2	10.7 ± 0.2	3.2 ± 0.2	0.3 ± 0.05	16.0 ± 0.3	1.75 ± 0.1	10.5 ± 0.1	12.0 ± 0.1	4.0 ± 0.1	1.5 ± 0.1	1.5 ± 0.1

MORNSUN Guangzhou Science & Technology Co., Ltd.

Address: No. 5, Kehui St. 1, Kehui Development Center, Science Ave., Guangzhou Science City, Huangpu District, Guangzhou, P. R. ChinaTel: 86-20-38601850Fax: 86-20-38601272E-mail: info@mornsun.cnwww.mornsun-power.com

MORNSUN Guangzhou Science & Technology Co., Ltd.

2023.10.26-A/5 Page 11 of 11