MORNSUN[®]

TD341SCAN DFN package isolated CAN transceiver

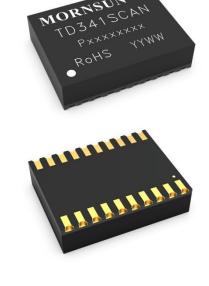
Features

- Ultra-small, ultra-thin, chip scale DFN package
- Compliant with ISO11898-2 standard
- Integrate 3.3V efficiently power supply
- I/O power supply range supports 3.3V and 5V microprocessors
- High isolation to 5000VDC
- Bus-Pin ESD protection up to 15kV(HBM)
- Baud rate up to 1Mbps
- -40V to +40V bus fault protection
- >25kV/us CMTI
- Low communication delay
- The bus supports maximum 110 nodes
- Industrial operating ambient temperature range: -40 °C to +105 °C
- Meet EN62368 standards
- Moisture Sensitivity Level (MSL) 3

Applications

- · Industrial automation, control, sensors and drive systems
- Building and greenhouse environmental control(HVAC) automation
- Security system
- Transport
- Medical treatment
- Telecommunication
- CAN Bus standard such as CAN open, Device Net, NMEA2000, ARNIC825, ISO11783, CAN Kingdom, CAN aerospace

Functional Description


TD341SCAN is a isolated CAN Bus transceiver, which is compliant with ISO11898-2 standard. Their logic side supports 3.3V and 5V logic level conversion.TD341SCAN integrate 3.3 V efficiently power. The TD341SCAN provide differential transmitting and receiving capability between the CAN protocol controller and the physical layer bus. It is capable of running at data rates of up to 1 Mbps. The device has the function of series line, over-voltage(-40V to 40V), ground loss protection and thermal shutdown so that it is especially suitable for working in harsh environment.

MORNSUN Guangzhou Science & Technology Co., Ltd.

2024.08.14-A/4 Page 1 of 9

MORNSUN Guangzhou Science & Technology Co., Ltd. reserves the copyright and right of final interpretation

Package

Contents

4

5

6

7 8

9

4.2

Product Working Description.....7

Application Circuit.....7

Internal Block Diagram

Transformer Drive

ĩ₽

1	Home	2	1
	1.1	Feature and Package	1
	1.2	Applications	1
		Functional Description	
2	Pin co	onnection and Description	2
3	IC Re	elated Parameters.	3
	3.1	Absolute Maximum Rating	3
	3.2	Recommended Operating Conditions	3
		Electrical Characteristics	
	3.4	Transmission Information	4
		Physical Information	

Pin Connection

GND	1		20	GND2
S	2		19	VISOIN
GND	3		18	NC
RXD	4		17	CANH
TXD	5		16	GND2
Vio	6	TD341SCAN	15	CANL
GND	7		14	NC
Vcc	8		13	GND2
GND	9		12	VISOOUT
GND	10		11	GND2

Note: All GND1 pin All GND₂ pins are internally connected.

Function Table

TD341SCAN	6 GND2	
	5 CANL	
	4 NC	
	3 GND2	
	2 Visoout	RXD Signal Signal Transceiver CANL
	I GND2	
	_	${\tt L} = = = = = = = = = = = = = = = = = = $
oins are internally con-	nected;	

VCC

GND1 ·

L

Letter	Description
Н	High-Level
L	Low-Level
X	Unrelated
Z	High Impedance

Tahla	1	Drivor	Function	tahla
lable	۰.	Driver	FUNCTION	lable

Inp	outs	Out	Bus State	
TXD	S	CANH	CANL	Bus State
L	L (Or No Connection)	Н	L	Dominant
H (Or No Connection)	Х	Z	Z	Recessive
Х	Н	Z	Z	Recessive

VID=CANH-CANL	RXD	Bus State
Vid≥0.9V	L	Dominant
0.5 <vid<0.9v< td=""><td>Uncertainty</td><td>Uncertainty</td></vid<0.9v<>	Uncertainty	Uncertainty
V _{ID} ≤0.5V	Н	Recessive
Open	Н	Recessive

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

2024.08.14-A/4 Page 2 of 9

Pin Number	Pin Name	Pin Functions
1	GND ₁	Ground(Logic side)
2	S	Ground Pin. In normal applied, this pin should connect to ground GND1.
3	GND ₁	Ground(Logic side)
4	RXD	Receiver output pin.
5	TXD	Driver input pin.
6	V _{IO}	Isolation power supply pin. By using 0.1uF ceramic capacitance ground GND ₁ .
7	GND ₁	Ground(Logic side)
8	V _{cc}	Power supply pin. By using 1uF ceramic capacitance ground GND ₁ .
9	GND1	Ground(Logic side)
10	GND ₁	Ground(Logic side)
11	GND ₂	Ground (Bus side)
12	VISOOUT	Insulation power output. By using 1uF ceramic capacitance ground GND ₂ . The pin needs to be connected to pin19 in application.
13	GND ₂	Ground (Bus Side)
14	NC	No connect
15	CANL	CANL pin
16	GND ₂	Ground (Bus side)
17	CANH	CANH pin
18	NC	No connect
19	V _{ISOIN}	Insulation power input. By using 0.1uF ceramic capacitance ground GND ₂ . The pin needs to be connected to pin12 in application.
20	GND ₂	Ground (Bus side)

Absolute Maximum Ratings

General test conditions: Free-air, normal operating temperature range (unless otherwise specified).

Parameters	Unit
Supply voltage,Vcc	-0.3V to +3.5V
Digital input voltage (TXD, RXD)	-0.3V to +5.5V
Bus voltage (CANH, CANL)	-40 to 40V
Receiver output current	-15 to 15mA
Operating temperature range	-40°C to +105°C
Storage temperature range	-50°C to +130°C
Reflow soldering temperature	Peak temp. ≤250°C, maximum duration ≤60s at 217°C. Please also refer to IPC/JEDEC J-STD-020D. 3.

Important: Exposure to absolute maximum rated conditions for an extended period may severely affect the device reliability, and stress levels exceeding the "Absolute Maximum Ratings" may result in permanent damage.

Recommended Operating Conditions

	Paramete	ers	Min.	Nom.	Max.	Unit
Vcc	Pov	wer supply	3.15	3.3	3.45	V
V _{IO}	Power su	ipply(Logic Side)	2.375		5.5	V
VI or VIC	Voltage at any bus	terminal (differential mode)	-12		12	V
Viн	High-level i	2			V	
VIL	Low-level input voltage(TXD)				0.8	V
		Driver	-70			
Іон	High-level output current	Receiver V _{CC} =3.3V	-4			- mA
		Driver			70	
IOL	Low-level output current	Receiver V _{CC} =3.3V			4	mA
TA	Operating temperature range		-40		105	°C
Icc	Recessiv	ve mode current		20	35	mA

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

Icc	Working current	Vcc= 3.3V,RL= 60Ω;TXD signal: f=500kHz;Duty=50%		50	65	mA
	Sig	naling rate	0		1000	kbps

Electrical Characteristics

General test conditions and $V_{CC}=V_{10}=3.3V$, Ta = 25°C (unless otherwise specified).

	Parameters	Conditions	Min.	Nom.	Max.	Unit
Driver				· · · · · ·		
	Dominant CANH output voltage		2.75	3.5	4.5	
[Vo(d)]	Dominant CANL output voltage	Figure 8 V _{TXD} = 0 V, RL = 60 Ω	0.5	1.5	2.25	V
VO(R)	Recessive bus voltage	Figure 8 V _{TXD} = 2 V, RL= 60 Ω	2	2.5	3	V
VOD(D)	Differential output voltage	Figure 8 V _{TXD} = 0 V, t < $t_{to(dom)TXD}$, V _{CC} =3.15 V to 3.45 V, RL = 50 to 65 Ω	1.5		3	V
	Desessive differential output voltage	Figure 8 V_{TXD} = 3.3V, RL = 60 Ω	-0.12		0.012	v
VOD(R)	Recessive differential output voltage	V _{TXD} = 3.3 V, No load	-0.5		0.05	V
Ін	TXD High-level input current	V _{TXD} =2 V			20	uA
lı.	TXD Low-level input current	V _{TXD} =0.8 V	-20			uA
RTXD	Internal TXD Pull up Resistor			9.1		kΩ
Receiver					•	
VIT+	Positive-going input threshold voltage	F . 44		750	900	mV
VIT-	Negative-going input threshold voltage	- Figure 11	500	650		mV
Vhys	Hysteresis voltage (V _{IT+} - V _{IT-})			120		mV
Vон		Іон = –4 mA, Figure 9	V10-0.4	V10-0.2		V V V
	High-level output voltage	Іон = –20 uA, Figure 9	V _{IO} – 0.1			
		lo∟= 4 mA, Figure 9		0.2	0.4	
Vol	Low-level output voltage	Io∟= 20 uA, Figure 9		0	0.1	V
Сі	Input capacitance to ground (CANH or CANL)	V _{TXD} = 3.3 V, VI = 0.4 sin (4E6 π t) + 2.5 V		13		pF
CID	Differential input capacitance	V _{TXD} = 3.3 V, VI = 0.4 sin (4E6 π t)		5		pF
RID	Differential input resistance	V _{TXD} =3.3V	15	30	40	kΩ
RIN	Input resistance (CANH or CANL)	V _{TXD} =3.3 V	30		80	kΩ
R I(m)	Input resistance matching: [1 - R _{IN(CANH)} / R _{IN(CANL)}] × 100%	VCANH = VCANL	-3%	0%	3%	
F0D	LIDM	CANH, CANL pin to GND			±15	kV
ESD	HBM	Other pins			±2	kV
EFT	IEC61000-4-4: Perf. Criteria B	CANH, CANL and GND			±2	kV
Surge	IEC61000-4-5: Perf. Criteria B	CANH, CANL and GND(Common Mode)			±2	kV
	Isolation voltage				5000	VDC
	Insulation resistance		1			GΩ
	Isolation capacitor			3		pF
CMTI	Common Mode Transient Immunity	V_{TXD} = V _{CC} or 0 V, V _{CM} = 1 kV, transient magnitude = 800 V	25			kV/us

Transmission Characteristics

General test conditions and V_{CC}=V_{IO}= 3.3V, Ta = 25 $^\circ \! \mathbb{C}$ (unless otherwise specified).

	Parameters	Conditions	Min.	Nom.	Max.	Unit
tonTxD	Propagation delay TXD On to bus active	RL = 60 Ω, CL = 100 pF, see		80	150	ns
t _{offTxD}	Propagation delay TXD Off to bus inactive			80	200	ns
t _{onRxD}	Propagation delay RXD On to receiver active			60	300	ns
t _{offRxD}	Propagation delay RXD Off to receiver inactive			60	250	ns

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

2024.08.14-A/4 Page 4 of 9

Parameters	Conditions	Unit
Weight	0.9(Тур.)	g

Typical Performance Curves

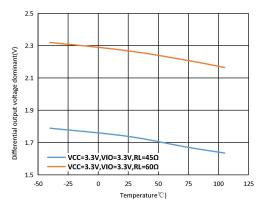


Figure 1. Drive differential output voltage dominant VS Temperature

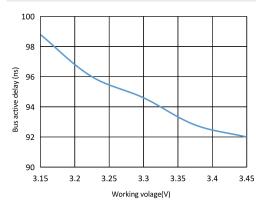


Figure 3. Propagation delay from TXD On to bus active VS Working voltage

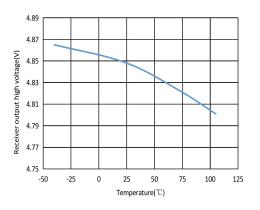


Figure 5. Receiver output high voltage VS Temperature

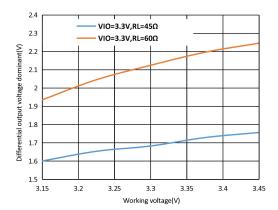


Figure 2. Drive differential output voltage dominant VS Working voltage

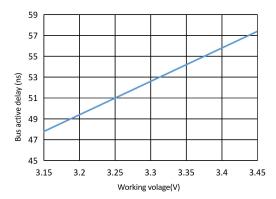


Figure 4. Propagation delay from TXD Off to bus inactive VS Working voltage

Figure 6. Receiver active delay VS Operating Temperature

MORNSUN Guangzhou Science & Technology Co., Ltd.

2024.08.14-A/4 Page 5 of 9

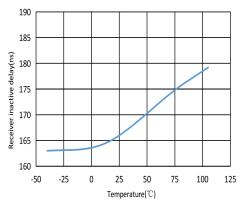
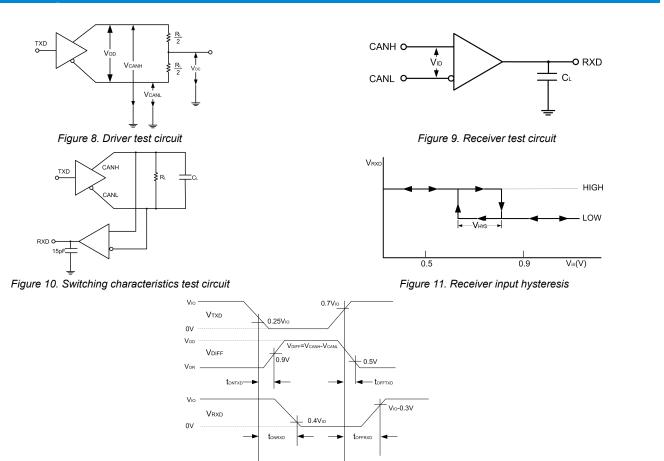
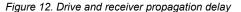




Figure 7. Receiver inactive delay VS Operating Temperature

Test Circuits

Detailed Description

TD341SCAN is a CAN of a style of separation transceiver with the ability of differential signal transmission between the bus and CAN protocol controller, it the inner integration insulate DC/DC power supply. which is compliant with ISO11898-2 standard.

Short-circuit protection: TD341SCAN has current-limiting protection to prevent the drive circuit from short-circuiting to positive and negative supply voltages. The power dissipation increases when a short circuit occurs. The short-circuit protection function protects the driver stage from damage.

Over-temperature protection: TD341SCAN has over-temperature protection. When the junction temperature exceeds 160°C, the current in the driver stage will decrease. Because the drive tube is the primary energy consuming component, current reduction can reduce power consumption and reduce chip temperature. At the same time, the rest of the chip remains functional.

MORNSUN Guangzhou Science & Technology Co., Ltd.

2024.08.14-A/4 Page 6 of 9

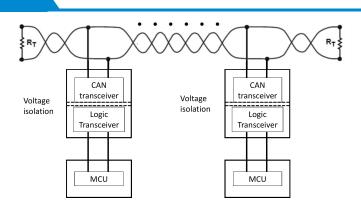
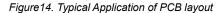



Figure 13. Typical Application Circuit

In General, Vcc and VIo can be shorted(Figure 14) .If the controller doesn't support 3.3V signal input, it can power 5V for VIo. When the module works in normal condition connect the S foot to GND1.

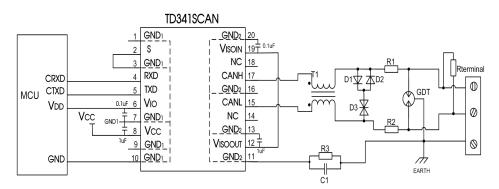


Figure 15. Port protection circuit for harsh environments

Recommended components and values:

Component	Recommended part, value	Component	Recommended part, value
R3	1ΜΩ	D1、D2	1N4007
C1	1nF, 2kV	D3	SMBJ30CA
T1	ACM2520-301-2P	Rterminal	120Ω
GDT	B3D090L	R1、R2	2.7Ω/2W

When the module is used in applications with harsh environment, it can be susceptible to large energy like lightning strike, etc. in which case, it is essential to add an adequate protection circuit to the CAN signal ports to protect the system from failure and maintain a reliable bus communication. Figure 15 provides a recommended protection circuit design for high-energy lightning surges, with a degree of protection related to the selected protection device. Parameter description lists a set of recommended circuit parameters, which can be adjusted according to the actual application situation. Also, when using the shielded cable, the reliable single-point grounding of the shield must be achieved.

Note: The recommended components and values is a general guideline only and must be verified for the actual user's application. We recommended using PTC's for R1 and R2 and to use fast recovery diodes for D1 and D2.

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

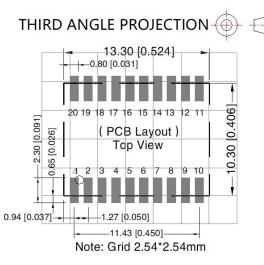
2024.08.14-A/4 Page 7 of 9

Using Suggests

Power isolation V_{ISOOUT} need through a series of capacitors connected to the output pin V_{ISOIN}, the power supply is not recommended for other purposes, otherwise it may cause the bus voltage did not meet the requirements of communication, causes the communication failure.
 Hot-swap is not supported.

③ If the external input of TXD is insufficient, the pull-up resistor should be added according to the situation.

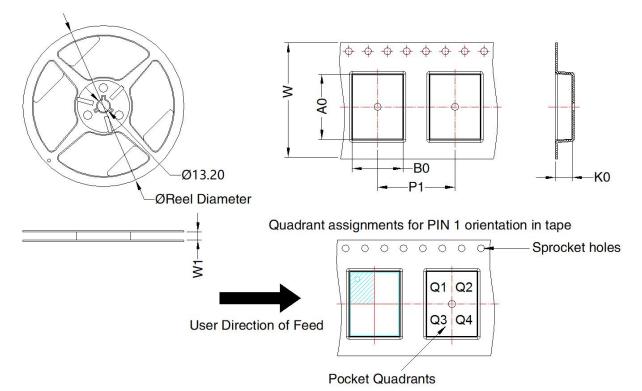
④ Refer to IPC 7093 for the welding process design of this product. For detailed operation guidance, please refer to Hot Air Gun Welding Operation Instruction for DFN Package Product or Welding Operation Instruction for DFN Package Product.


Ordering Information

Part number	Package	Number of pins	Product marking	Tape & Reel	
TD341SCAN	DFN	20	TD341SCAN	300/REEL	

Package Information

Note: Unit: mm[inch] Pin diameter tolerances: ± 0.10[±0.004]



Pin-Out								
Pin	Mark	Pin	Mark					
1	GND ₁	11	GND ₂					
2	S	12	VISOOUT					
3	GND ₁	13	GND ₂					
4	RXD	14	NC					
5	TXD	15	CANL					
6	V _{IO}	16	GND ₂					
7	GND ₁	17	CANH					
8	V _{cc}	18	NC					
9	GND ₁	19	V _{ISOIN}					
10	GND ₁	20	GND ₂					

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

2024.08.14-A/4 Page 8 of 9

Device	Package Type	Pin	MPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TD341SCAN	DFN 10x13	20	300	180.0	24.4	13.52	10.52	3.5	16.0	24.0	Q1

MORNSUN Guangzhou Science & Technology Co., Ltd.

 Address: No. 5, Kehui St. 1, Kehui Development Center, Science Ave., Guangzhou Science City, Huangpu District, Guangzhou, P. R. China

 Tel: 86-20-38601850
 Fax: 86-20-38601272

 E-mail: info@mornsun.cn
 www.mornsun-power.com

MORNSUN Guangzhou Science & Technology Co., Ltd.

2024.08.14-A/4 Page 9 of 9