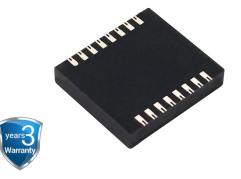


TD041SCANH-S DFN package isolated CAN Transceiver

Features

- Ultra-small, ultra-thin, chip scale DFN package
- Product volume 10*10*1.2mm, thickness only 1.2mm
- Compatible with the "ISO 11898-2" standard
- I/O power supply range supports 3.3V and 5V microprocessors
- High isolation to 3750Vrms
- Bus-Pin ESD protection up to 15kV(HBM)
- Baud rate up to 1Mbps
- -40V to +40V bus fault protection
- >25kV/µs CMTI
- TXD dominant time-out function
- Low communication delay
- The bus supports maximum 110 nodes
- Industrial operating ambient temperature range:-40℃ to +125℃
- Meet AEC-Q100 standards
- EN62368 approval
- Moisture Sensitivity Level (MSL) 3

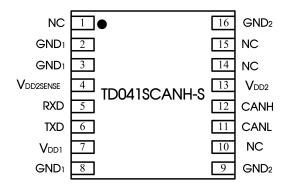
Applications


- Industrial automation, control, sensors and drive systems
- Building and greenhouse environmental control(HVAC) automation
- · Security system
- Transport
- Medical treatment
- Telecommunication
- Can Bus standard such as CAN open, Device Net, NMEA2000, ARNIC825, ISO11783, CAN Kingdom, CAN aerospace

Functional Description

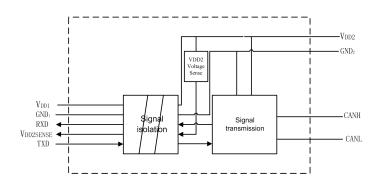
TD041SCANH-S is a isolated CAN bus transceiver, which is compliant with ISO11898-2 standard. The TD041SCANH-S provide differential transmitting and receiving capability between the CAN protocol controller and the physical layer bus. It is capable of running at data rates of up to 1 Mbps. The device has the function of series line, over-voltage, ground loss protection (-40V to 40V) and thermal shutdown so that it is especially suitable for working in harsh environment. The rated operating temperature range of TD041SCANH-S is -40°C to 125°C.

Package



Contents

1	Hom	ne	.1
	1.1	Feature and Package	1
	1.2	Applications	1
	1.3	Functional Description	1
2	Pin I	Package and internal block diagram	.2
3	Trutl	n table	.2
4	IC R	elated parameters	3
	4.1	Absolute Maximum Rating	3
	4.2	Recommended Operating Conditions	3
	4.3	Electrical Characteristics	4
	4.4	Transmission Characteristics	5
	4.5	Physical Information	5


5	Characteristic Curve	5
	5.1 Typical Performance Curve	5
	5.2 Parameter Measurement Information	6
6	Product Working Description	7
7	Application Circuit	7
8	Suggestions for Power Supply	8
	Order Information	
10	Package Information	9
	Tape & Reel Information	

Pin Connection

Note: All GND_1 pins are internally connected; All GND_2 pins are internally connected.

Internal Block Diagram

Function Table

Letter	Description
Н	High-Level
L	Low-Level
I	Indeterminate
X	Unrelated
Z	High Impedance
NC	No Connection

Table 1. Driver Function table

Power		Input	Output			
V _{DD1}	Vdd2	TXD	Bus State	CANH	CANL	V _{DD2SENSE}
On	On	L	Dominant	Н	L	L
On	On	Н	Recessive	Z	Z	L
On	On	left floating	Recessive	Z	Z	L
Off	On	X	Recessive	Z	Z	I
On	Off	L	I	I	I	Н

Table 2. Receiver Function table

Power		Inpu	ıt	Output	
V _{DD1}	Vdd2	V _{ID} = CANH - CANL	Bus State	RXD	V _{DD2SENSE}
On	On	≥0.9 V	Dominant	L	L
On	On	≤0.5 V	Recessive	Н	L
On	On	$0.5 \text{ V} < V_{ID} < 0.9 \text{ V}$	I	I	L
On	On	OPEN	Recessive	Н	L
Off	On	X	X	I	I
On	Off	X	X	Н	Н

Pin Descriptions

Pin Number	Pin Name	Pin Functions
1	NC	No Connect.
2	GND₁	Ground(Logic side).
3	GND₁	Ground(Logic side).
4	V _{DD2} SENSE	V _{DD2} Voltage Sense.
5	RXD	Receiver Output Data (L: Dominant Bus State; H: Recessive Bus State).
6	TXD	Driver Input Data (L: Dominant Bus State; H: Recessive Bus State).
7	V _{DD1}	Power Supply (Logic Side).
8	GND₁	Ground(Logic side).
9	GND ₂	Ground (Bus Side).
10	NC	No Connect.
11	CANL	Low Level CAN Voltage Input/Output.
12	CANH	High Level CAN Voltage Input/Output.
13	V_{DD2}	Power Supply (Bus Side).
14	NC	No Connect.
15	NC	No Connect.
16	GND ₂	Ground (Bus Side).

Absolute Maximum Ratings

General test conditions: Free-air, normal operating temperature range (unless otherwise specified).

I	Parameters	Min.	Max.	Unit
V_{DD1}, V_{DD2}	Power Supply	-0.5	6	V
Vı	Input Voltage(TXD)	-0.5	V _{DD1} +0.5	V
V _{O(RXD)}	Output Voltage (RXD)	-0.5	V _{DD1} +0.5	V
V _O (SENSE)	Output Voltage (V _{DD2SENSE})	-0.5	V _{DD1} +0.5	V
Vcanh,Vcanl	Bus terminal voltage	-40	40	V
TA	Operating Temperature Range	-40	125	°C
T _{stg}	Storage Temperature Range	-50	150	°C
Reflow So	oldering Temperature	Peak temp. ≤260°C	, maximum duration ≤60s at IPC/JEDEC J-STD-020D.	

Important: Exposure to absolute maximum rated conditions for an extended period may severely affect the device reliability, and stress levels exceeding the "Absolute Maximum Ratings" may result in permanent damage. All voltage values are referenced to the reference ground (GND).

Recommended Operating Conditions

	Recommended Operating Conditions				Max.	Unit
V_{DD1}	Power Supply(L	Power Supply(Logic Side)			5.5	
V_{DD2}	Power Supply(Bus Side)	4.5	5	5.5	
V _I or V _{IC}	Voltage at any bus termin	nal (common mode)	-40		+40	V
V _{IH}	High-level input v	High-level input voltage(TXD)				
V _{IL}	Low-level input ve	Low-level input voltage(TXD)			0.8	
I _{D1}	Input Static Current(Logic Side)	V _{DD1} = 5.5V, V _{DD2} = 5.5V,			3.5	m 1
I _{D2}	Input Static Current(Bus Side)	No Signal			10	mA
P _D	Power Dissipation	V _{DD1} = 5.5V, V _{DD2} = 5.25V,			230	
P _{D1}	Power Dissipation(Logic Side)	Power Dissipation(Logic Side) TA= 25°C, R _L = 60Ω; TXD Input Signal: f= 500kHz;			30	mW
P _{D2}	Power Dissipation(Bus Side)	Duty= 50%			200	
	Signaling	rate	40		1000	kbps

Electrical Characteristics

General test conditions and V_{DD1} = V_{DD2} = 5V, Ta = 25 $^{\circ}$ C (unless otherwise specified).

	Parameters	Conditions	Min.	Nom.	Max.	Unit
Driver						
V _{IH}	Input High Voltage	TXD pins, see Figure 11	2			V
V _{IL}	Input Low Voltage	TXD pins, see Figure 11			0.8	V
I _{IH} , I _{IL}	CMOS Input Current	TXD pins, see Figure 11			2	mA
V _{CANL} ,	Recessive Bus Voltage	V _{TXD} = high, R _L = ∞, see Figure 11	2.0		3.0	V
V_{CANH}	CANH Output Voltage	V _{TXD} = low, see Figure 11	2.75		4.5	V
V _{CANL}	CANL Output Voltage	V _{TXD} = low, see Figure 11	0.5		2	V
	Differential Quitout Voltage	V_{TXD} = low, R_L = 50 Ω , see Figure 11	1.5		3	V
V_{OD}	Differential Output Voltage	V _{TXD} = high, R _L = ∞, see Figure 11	-500		+50	mV
R _{TXD}	Internal TXD Pull up Resistor			9.1		kΩ
Receiver						
V _{IT+}	Positive-going input threshold voltage				900	mV
$V_{\text{IT-}}$	Negative-going input threshold voltage		500			mV
V _{HYS}	Hysteresis Voltage (V _{IT+} – V _{IT-})	See Figure 14		150		mV
R _{DIFF}	Differential input resistance		10		100	kΩ
V_{OL}	RXD Output Low Voltage	I _{OUT} = 1.5 mA		0.2	0.4	V
V _{OH}	RXD Output High Voltage	I _{OUT} = −1.5 mA	V _{DD1} -0.4	V _{DD1} - 0.2		V
Cı	Input capacitance to ground (CANH or CANL)	TXD at 3 V, V _I = 0.4 sin (4E6πt) + 2.5 V		13		pF
C _{ID}	Differential input capacitance	TXD at 3 V, V _I = 0.4 sin (4E6πt)		5		pF
Other						
V_{OL}	VDD2SENSE Output Low Voltage	I _{OSENSE} = 1.5 mA		0.2	0.4	V
V_{OH}	VDD2SENSE Output High Voltage	I _{OSENSE} = −1.5 mA	V _{DD1} -0.4	V _{DD1} - 0.2		V
V _{TH(SENSE)}	Bus Voltage Sense Threshold Voltage	V _{DD2} =100Hz	2.0		2.5	V
	HBM	CANH, CANL and GND			±15	kV
ESD	TIDIVI	Other pins			±2	kV
	IEC/EN 61000-4-2(Contact) Perf. Criteria B	CANH, CANL and GND			±2	kV
EFT	IEC61000-4-4: Perf. Criteria B	CANH, CANL and GND			±2	kV
Surge	IEC61000-4-5: Perf. Criteria B	CANH, CANL and GND(Common Mode)			±2	kV
V _{I-O}	Isolation Test	Leakage current <1mA.			3750	Vrms
R_{I-O}	Insulation Resistance	At 500VDC	1000			ΜΩ

C _{I-O}	Isolation Capacitor			3	pF
Cı	Input Capacitor			4	pF
CMTI	Common Mode Transient Immunity	TXD = V _{DD1} or 0 V, VCM = 1 kV, transient magnitude = 800 V	25		kV/μs

Transmission Characteristics

General test conditions and V_{DD1} = V_{DD2} = 5V, Ta = 25 $^{\circ}$ C (unless otherwise specified).

	Parameters	Conditions	Min.	Nom.	Max.	Unit
t _{onTXD}	Propagation Delay TXD On to Bus Active				150	ns
t _{offTXD}	Propagation Delay TXD Off to Bus Inactive	RL = 60 Ω, CL = 100 pF, see Figure 13 and Figure 15			200	ns
t _{onRXD}	Propagation Delay TXD On to Receiver Active				300	ns
t _{offRXD}	Propagation Delay TXD Off to Receiver Inactive				250	ns
tse	Enable Time, VDD2 High to VDD2SENSE Low				100	us
t _{SD}	Disable Time, VDD2 Low to VDD2SENSE High				100	us
t _{TXD_DTO}	Dominant time-out time	C _L = 100 pF	0.3		12	ms

Physical Specifications

Parameters	Value	Unit
Weight	0.3(Typ.)	g

Typical Performance Curves

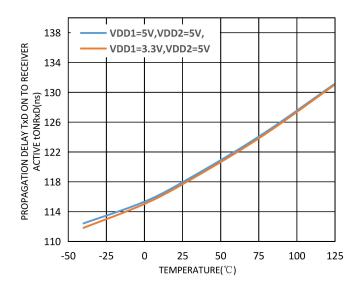


Figure 3. Propagation Delay from TXD On to Receiver Active vs.

Temperature

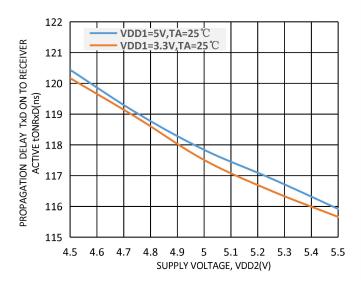


Figure 4. Propagation Delay from TXD On to Receiver Active vs. Voltage, VDD2

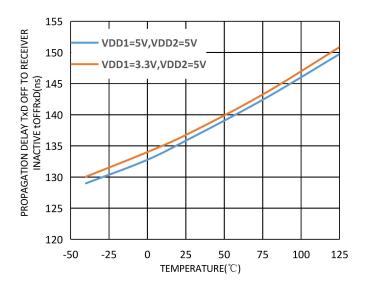


Figure 5. Propagation Delay from TXD Off to Receiver Inactive vs. Temperature

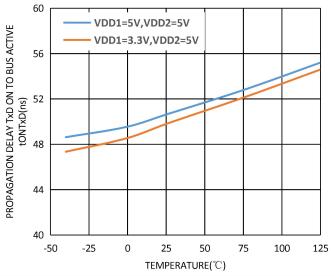


Figure 7. Propagation Delay from TXD On to Bus Active vs. Temperature

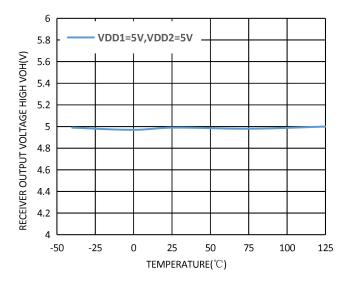


Figure 9. Receiver Output High Voltage vs. Temperature

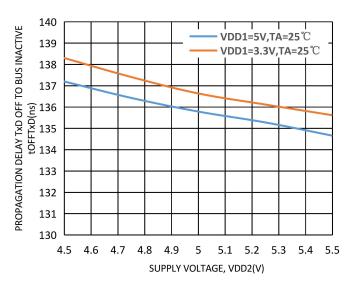


Figure 6. Propagation Delay from TXD Off to Bus Inactive vs. Voltage, VDD2

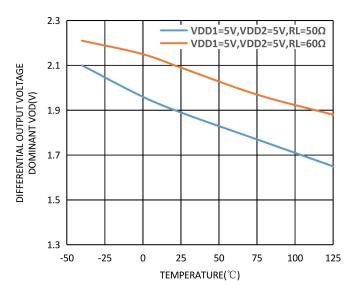


Figure 8. Drive Differential Output Voltage Dominant vs. Temperature

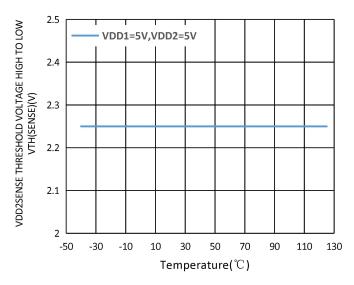


Figure 10. VDD2 Voltage Sense Threshold Voltage High to Low vs. Temperature

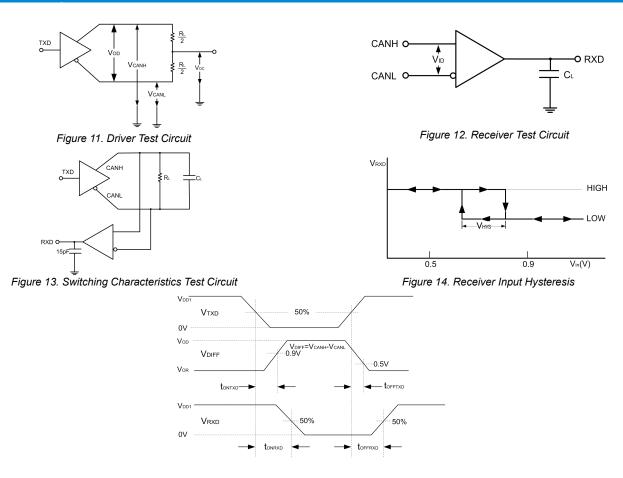


Figure 15. Drive and Receiver Propagation Drive

Detailed Description

TD041SCANH-S is a isolated CAN bus transceiver with the ability of differential signal transmission between the bus and CAN protocol controller, which is compliant with ISO11898-2 standard.

Short-circuit protection: TD041SCANH-S has current-limiting protection to prevent the drive circuit from short-circuiting to positive and negative supply voltages. The power dissipation increases when a short circuit occurs. The short-circuit protection function protects the driver stage from damage.

Over-temperature protection: TD041SCANH-S has over-temperature protection. When the over-temperature protection is triggered, the current in the driver stage will decrease. Because the drive tube is the primary energy consuming component, current reduction can reduce power consumption and reduce chip temperature. At the same time, the rest of the chip remains functional.

Dominant time-out function: TD041SCANH-S has dominant time-out function to prevent if the pin TXD is forced to a permanent low level due to a hardware or software application failure, the built-in TXD dominant timeout timer circuit prevents the bus line from being driven to a permanent dominant state (blocking all network traffic). The timer is triggered by the negative edge on pin TXD. If the low level on pin TXD lasts longer than the internal timer value (t_{TXD_DTO}), the transmitter will be disabled and the drive bus will enter a recessive state. The timer is reset by the positive edge on pin TXD.

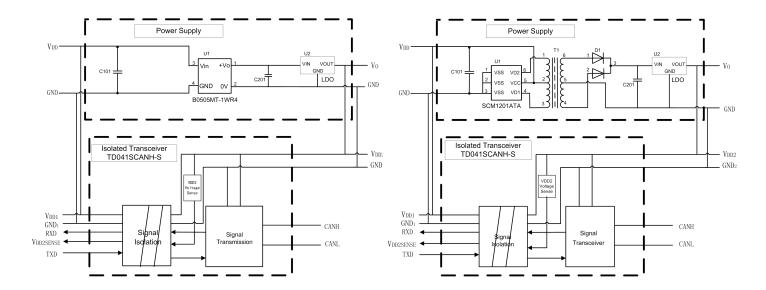


Figure 16. Drive and Receiver Propagation Drive

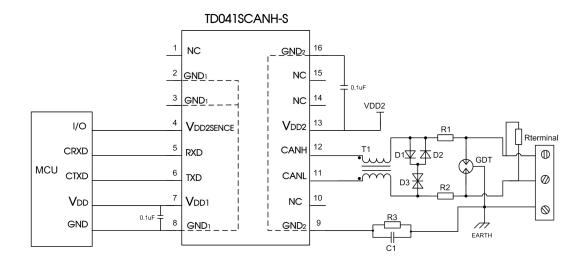


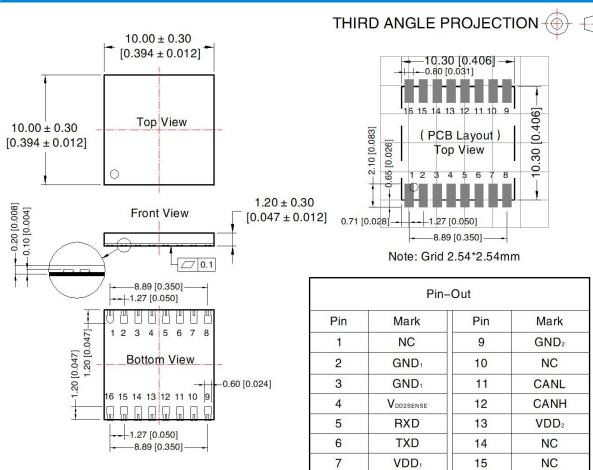
Figure 17. Port protection circuit for harsh environments

Recommended components and values:

Component	Recommended part, value	Component	Recommended part, value 1N4007			
R3	1ΜΩ	D1、D2				
C1 1nF, 2kV		D3	SMBJ30CA			
T1	ACM2520-301-2P	R _{terminal}	120Ω			
GDT	B3D090L	R1、R2	2.7Ω/2W			

When the module is used in applications with harsh environment, it can be susceptible to large energy like lightning strike, etc. in which case, it is essential to add an adequate protection circuit to the CAN signal ports to protect the system from failure and maintain a reliable bus communication. Figure 17 provides a recommended protection circuit design for high-energy lightning surges, with a degree of protection related to the selected protection device. Parameter description lists a set of recommended circuit parameters, which can be adjusted according to the actual application situation. Also, when using the shielded cable, the reliable single-point grounding of the shield must be achieved.

Note: The recommended components and values is a general guideline only and must be verified for the actual user's application. We recommended using PTC's for R1 and R2 and to use fast recovery diodes for D1 and D2.


Using Suggests

- ① Hot-swap is not supported.
- ② If the external input of TXD is insufficient, the pull-up resistor should be added according to the situation.
- 3 Refer to IPC 7093 for the welding process design of this product. For detailed operation guidance, please refer to Hot Air Gun Welding Operation Instruction for DFN Package Product or Welding Operation Instruction for DFN Package Product.

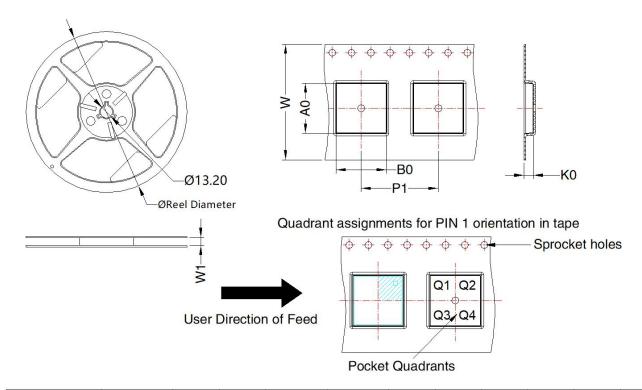
Ordering Information

Part number	Package	Number of pins	Product Marking	Tape & Reel	
TD041SCANH-S	DFN	16	TD041SCANH-S	500/REEL	

Package Information

Note:

Unit: mm[inch]


General tolerances: $\pm 0.10[\pm 0.004]$

16

GND₂

GND₁

8

Device	Package Type	Pin	MPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TD041SCANH-S	DFN 10x10	16	500	180.0	24.4	10.44	10.44	2.0	16.0	24.0	Q2

MORNSUN Guangzhou Science & Technology Co., Ltd.