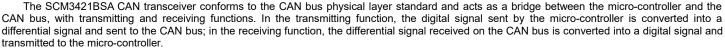
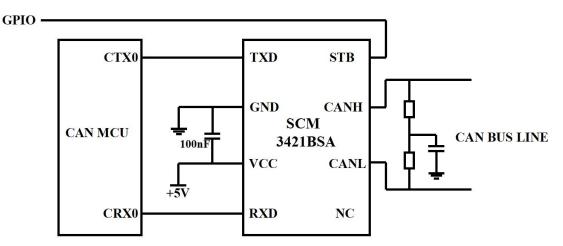
MORNSUN[®]

SCM3421BSA CAN transceiver


Features

- Compatible to ISO 11898
- Suitable for 5V systems
- Loop delay less than 140ns
- Power on VCC is 50mA for bus dominant and 5mA for bus recessive
- Protection features:
- -Over-temperature protection
- -Under-voltage protection
- -Current limiting on bus pins
- The nodes that are unpowered do not interfere with the bus
- HBM ESD up to ±8KV
- ±58V fault tolerant on CANH and CANL

Application


- Automation in industry
- Intelligent meter
- Security System
- Signal transmission for long distance

Functional Description

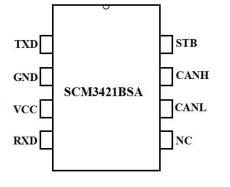
SCM3421BSA focuses on strengthening the chip reliability design on the basis of traditional IC, including under-voltage protection, over-temperature protection, over-current protection, enhanced ESD design, etc.

Typical Application Circuit

Note: GPIO indicates the universal I/O port.

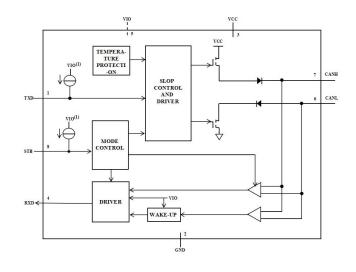
MORNSUN Guangzhou Science & Technology Co., Ltd.

Package


Optional package: SOP-8, see package outline for more info


2023.09.14-A/1 Page 1 of 10

Contents


Features and Package Application	
Functional Description	
Typical Application Circuit	1
Pin Package	2
Block Diagram	2
Truth Table	2
Pin Description	2
Limiting Values	3
Recommended Operating Conditions	3

Pin Package

Block Diagram

Truth Table

		Inputs		Outputs
Mode	STB	TXD	CAN driver	RXD
	LOW	LOW	Dominant	LOW
Normal	LOW	HIGH	Recessive	LOW if the CAN bus is dominant
	LOW			HIGH if the CAN bus is recessive
	HIGH	х	- - - -	LOW when detected wake-up signal
Standby	HIGH	х	Floating	HIGH when not detected wake-up signal

Pin Description

Pin	Symbol	Description
1	TXD	Transmit data input
2	GND	Ground
3	VCC	Supply voltage
4	RXD	Receive data output; reads out data from the bus lines
5	NC	Floating
6	CANL	LOW-level CAN bus line
7	CANH	HIGH-level CAN bus line
8	STB	Standby mode control input

MORNSUN Guangzhou Science & Technology Co., Ltd.

MORNSUN®

2023.09.14-A/1 Page 2 of 10

Limiting Values

The following data are measured within the range of natural ventilation and normal operating temperatures (unless otherwise stated).

Symbol	Parameter	Value	Unit
VCC	Supply voltage	-0.3 to +6	V
TXD/RXD/STB	Voltage of MCU terminal	-0.3 to VCC+0.3	V
CANH/CANL	Voltage on CAN bus	-58 to +58	V
T _{STG}	Storage temperature	-55 to 150	°C
T _A	Virtual junction temperature	-40 to 125	°C
	Soldering temperature	300	°C

Exceeding the values listed in the Limiting values table may cause permanent damage to the device. The reliability of the device may be compromised by prolonged operation under limiting conditions. All voltage values are based on the reference ground (GND).

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply voltage	VCC	4.5	5.5	V
Input voltage	Vin	-0.3	VCC+0.3	V
Data rate	TF		5M	bps
Voltage on pin CANH and pin CANL	V _{can}	-30	30	V
Differential voltage on CAN bus	V _{diff}	1.5	3.0	V
Operating temperature	T _A	-40	125	°C

Electrical Characteristics

TA= -40 $^\circ\!\mathrm{C}$ to 125 $^\circ\!\mathrm{C};$ VCC=4.5V to 5.5V; RL=60Q, f_TXD=500KHz unless specified otherwise.

	ectrical characteristics	0		-			
Symbol	Parameter	Conditions	Min	Тур	Max	Uni	
VIH	HIGH-level input voltage		0.7VCC		VCC+0. 3	v	
VIL	LOW-level input voltage		-0.3		0.3VCC		
VO _(dif)	Dominant differential voltage	V_{TXD} =0V; $VO_{(dif)}$ = V_{CANH} - V_{CANL} , RL=45 Ω to 65 Ω , VCC=4.5 to 5.5V	1.5		3	V	
V O(dif)	Recessive differential voltage	V _{TXD} =VCC; VO _(dif) =V _{CANH} -V _{CANL} , no load, VCC=4.5 to 5.5V	-50		50	m∖	
VO _(rec)	Recessive output voltage	Normal mode; V _{TXD} =VCC; no load	2	0.5VCC	3	V	
1/0	Dominant output voltage:V _{CANH}	V_{TXD} =0V, RL=50 Ω to 65 Ω	2.75	3.5	4.5	V	
VO _(dom)	Dominant output voltage:V _{CANL}	V_{TXD} =0V, RL=50 Ω to 65 Ω	0.5	1.5	2.25	V	
$V_{\text{dom}(TX)\text{sym}}$	Transmitter dominant voltage symmetry	-400		400	mV		
V _{TXsym}	Transmitter voltage symmetry	0.9VCC		1.1VCC	V		
IO _{(sc)dom}	Dominant short-circuit output current	ninant short-circuit output current V _{TXD} =0, V _{CANH} =V _{CANL} =-15 to 40V					
IO _{(sc)rec}	Recessive short-circuit output current	V _{TXD} =VCC, V _{CANH} =V _{CANL} = -27 to 32V	-5		5	mA	
Receiver elec	trical characteristics		-				
Symbol	Parameter	Conditions	Min	Тур	Max	Uni	
V _{rec(RX)}	Receiver recessive voltage	∆V on bus, -30V≤V _{COM} ≤30V	0.4			V	
V _{dom(RX)}	Receiver dominant voltage	∆V on bus, -30V≤V _{COM} ≤30V			1	V	
V _{hys(RX)dif}	Differential receiver hysteresis voltage			120		m∖	
I _{ОН}	HIGH-level output current on pin RXD	V _{RXD} =VCC-0.4	-8	-4	-2	mA	
IOL	LOW-level output current on pin RXD	V_{RXD} =0.4V, bus dominant	2	5	12	mA	
V _{COM}	Common-mode voltage on pin CANH and CANL	Voltage on bus to GND	-30		30	V	
R _{IN}	Input resistance on CAN bus	V _{TXD} =VCC, -30V≤V _{CANH} /V _{CANL} ≤30V	10		40	KΩ	
Power charac	teristics						
Symbol	Parameter	Conditions	Min	Тур	Max	Uni	
100	Supply current in standby mode	V _{STB} =VCC, V _{TXD} =VCC			65	uA	
ICC	Dominant supply current	V _{STB} =0, V _{TXD} =0		50	70	mA	

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

Recessive supply current	V _{STB} =0, V _{TXD} =VCC		5	10	mA	
--------------------------	--	--	---	----	----	--

Switching Characteristics

TA= -40 $^\circ\!\mathrm{C}$ to 125 $^\circ\!\mathrm{C};$ VCC=4.5V to 5.5V; RL=60Ω, CL=100PF, f_{TXD} =500KHz unless specified otherwise.

Transmitter sw	itching characteristics	rr				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
TF	Data rate			500K	5M	bps
$Td_{(TXD-busdom)}$	Delay time from TXD to bus dominant	Normal mode, delay time from TXD falling edge of 30% to bus differential voltage rising edge of 0.9V		65	80	ns
$Td_{(TXD-busrec)}$	Delay time from TXD to bus recessive	Normal mode, delay time from TXD rising edge of 70% to bus differential voltage falling edge of 0.5V		90	100	ns
Tr_CAN	Rise slope of Bus output	From 10% to 90% of rising edge		60		ns
Tf_CAN	Fall slope of Bus output	From 90% to 10% of falling edge		70		ns
Tbit _(bus)	Transmission bit width distortion	-65		30	ns	
Receiver switc	hing characteristics					
$Td_{(busdom\text{-}RXD)}$	Delay time from bus dominant to RXD	Normal mode, delay time from bus differential voltage rising edge of 0.9V to RXD falling edge of 30%		60	80	ns
Td _(busrec-RXD)	Delay time from bus recessive to RXD	Normal mode, delay time from bus differential voltage falling edge of 0.5V to RXD rising edge of 70%		65	100	ns
Tbit _(RXD)	Bit width distortion of RXD	Tbit _(TXD) =500ns, measure the bit width distortion of RXD	-100		50	ns
Loop character	ristics					
$Td_{(TXDL-RXDL)}$	Delay time from TXD dominant to RXD dominant	Normal mode, delay time from TXD falling edge of 30% to RXD falling edge of 30%		110	140	ns
Td _(TXDH-RXDH)	Delay time from TXD recessive to RXD recessivet	Normal mode, delay time from TXD rising edge of 70% to RXD rising edge of 70%		110	140	ns
Wake-up chara	acteristics					
Td _(wake-up)	Time of wake-up signal on CAN bus	Standby mode, time of wake-up signal			5	us

Other Characteristics

TA= -40 $^\circ\!{\rm C}$ to 125 $^\circ\!{\rm C}$; VCC=4.5V to 5.5V; RL=60Q, f_{TXD}=500KHz unless specified otherwise.

Over-temperatu	ire protection										
Symbol	Parameter	Conditions	Min	Тур	Max	Unit					
Tj _(sd)	Shutdown junction temperature	150	160	170	°C						
Under-voltage p	Under-voltage protection										
V _{uvd(VCC)}	Under-voltage value of VCC		3.5		4.5	V					
ESD											
HBM mode, CANH and CANL VESD (to GND)			±8			кv					
	HBM mode, other pins		±4			KV					

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

2023.09.14-A/1 Page 4 of 10

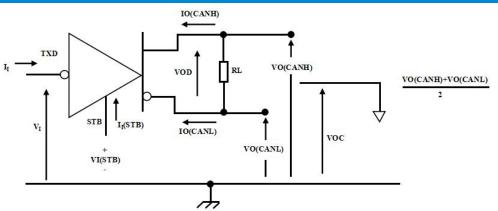


Fig 1. Definition of driver voltage and current test

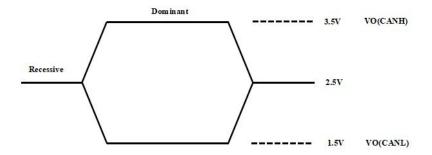
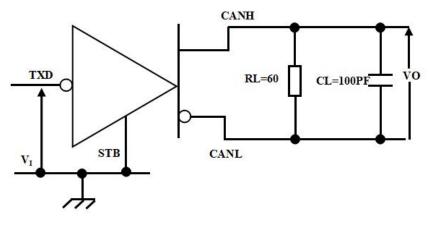
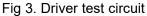




Fig 2. Definition bus logic voltage

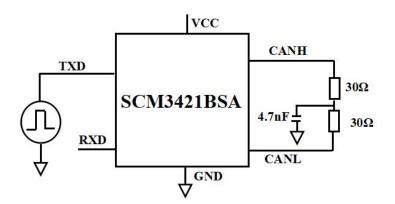


Fig 4. Test circuit for measuring transceiver driver symmetry

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

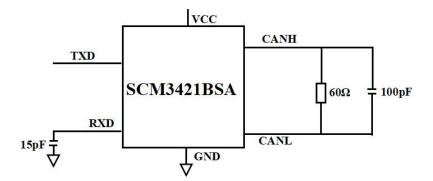
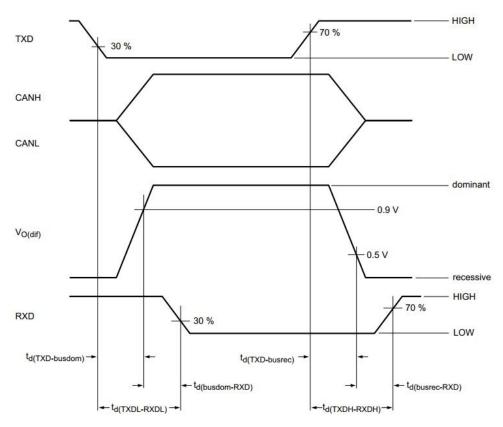



Fig 5. Timing test circuit for CAN transceiver

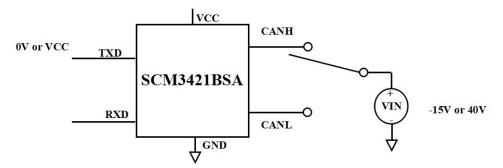
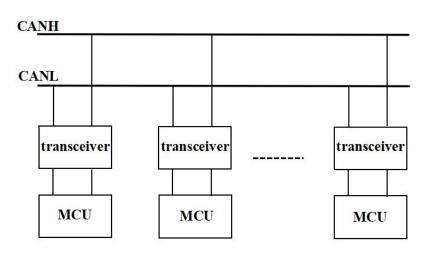


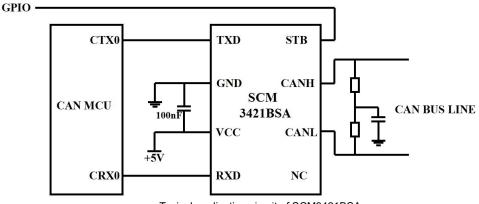
Fig 7. Test circuit of short-circuit output current

MORNSUN Guangzhou Science & Technology Co., Ltd.

2023.09.14-A/1 Page 6 of 10


As a CAN transceiver chip, SCM3421BSA includes transmitting and receiving functions. The SCM3421BSA implements the CAN physical layer as defined in ISO 11898-2:2016 and SAE J2284-1 to SAE J2284-5. The SCM3422BSA supports two operating modes, normal mode and standby mode, which are controlled by the pin STB.

A LOW level on pin STB selects Normal mode. In this mode, the transceiver is able to transmit and receive data. The digital signal sent by the MCU to pin TXD and converted into the differential signal conforming to CAN protocol by the transmitting channel. When pin TXD is low level, the state of CAN bus is dominant, and output a differential signal; When pin TXD is high level, the state of CAN bus is recessive, and output a common mode signal. In the receiving state, CANH and CANL port receive differential signals from CAN bus, then the signals are converted into digital signals by receiving channel and output to the controller from the RXD port. When the received bus signal is differential, the RXD output is low, and when the received bus signal is common mode, the RXD output is high.


A HIGH level on pin STB selects standby mode. At this time, the transmitting channel and receiving channel are disabled, and only the wake-up channel is operating, the output of RXD is high. When a wake-up signal is detected by wake-up channel, the output of RXD changes to be low, and STB input will change to be low, the chip begins to opreate in normal mode. If not detect wake-up signal, the output of RXD is keeping high.

The SCM3421BSA includes over-temperature protection and under-voltage protection to enhance chip reliability, fault-tolerant voltage on CAN bus pins are up to ±58V, Contact Discharge ESD on CAN bus pins are up to ±4KV.

Application Circuit

Application circuit of CAN transceiver

Typical application circuit of SCM3421BSA

Suggestion on Power

Add capacitor on VCC to enhance power voltage stability.

MORNSUN Guangzhou Science & Technology Co., Ltd.

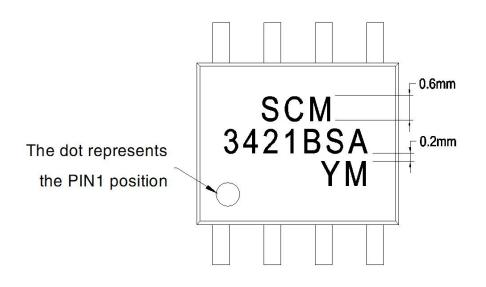
2023.09.14-A/1 Page 7 of 10

Order Information

Part number	Package	Number of pins	Produce marking	Tape & Reel Information
SCM3421BSA	SOP	8	SCM 3421BSA YM	3000/reel

Product marking and date code

SCM3421XYZ :


(1) SCM3421, product code.

(2) X = A-Z, version code.

(3) Y = S, package code; S: SOP package.

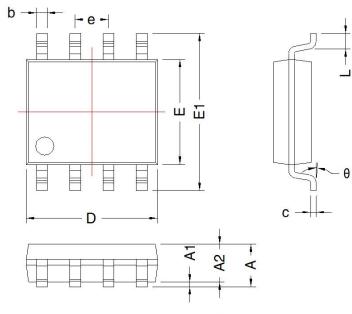
(4) Z = C, I, A, M, temperature grade code; C : 0°C-70°C, I : -40°C-85°C, A : -40°C-125°C, M : -55°C-125°C.

(5) YM: product traceability code; Y: product production year code, M: product production month code.

Note:

- 1、Typeface: Arial;
- 2、Character size:

Height: 0.6mm, Spacing: 0.1mm, Line Spacing: 0.2mm;

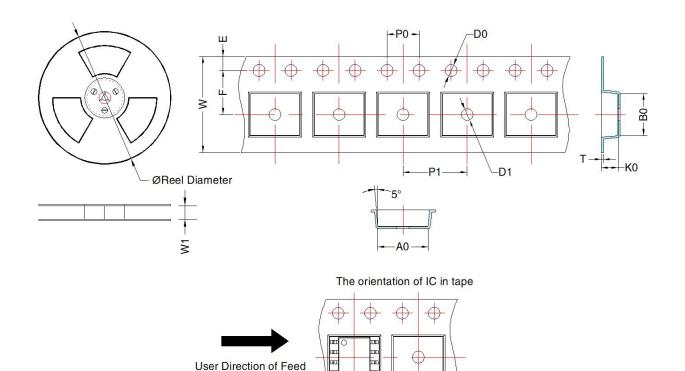


MORNSUN Guangzhou Science & Technology Co., Ltd.

Page 8 of 10

2023.09.14-A/1

THIRD ANGLE PROJECTION 💮 🛁



		SOP-8		
Mark	Dimensi	on(mm)	Dimensi	on(inch)
Mark	Min	Max	Min	Max
Α	1.45	1.75	0.057	0.069
A1	0.10	0.25	0.004	0.010
A2	1.35	1.55	0.053	0.061
D	4.70 5.10		0.185	0.201
Е	3.80	4.00	0.150	0.157
E1	5.80	6.20	0.228	0.244
L	0.40	1.27	0.016	0.50
b	0.33	0.51	0.013	0.020
е	1.27	BSC	0.05	BSC
С	0.17	0.25	0.007	0.010
θ	0°	8°	0°	8°

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

2023.09.14-A/1 Page 9 of 10

Device	Package Type	MPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	T (mm)	W (mm)	E (mm)	F (mm)	P1 (mm)	P0 (mm)	D0 (mm)	D1 (mm)
SCM3421BSA	SOP-8	3000	330.0	12.4	6.5 ± 0.2	5.45 ± 0.2	2.0 ± 0.2	0.3 ± 0.05	12.0 ± 0.3	1.75 ± 0.1	5.5 ± 0.1	8.0 ± 0.1	4 ± 0.1	1.5 ± 0.1	1.5 ± 0.1

Note:

The minimum order quantity is the minimum package quantity, and the order quantity should be an integer multiple of MPQ.

Mornsun Guangzhou Science & Technology Co., Ltd.

Address: No. 5, Kehui St. 1, Kehui Development Center, Science Ave., Guangzhou Science City, Luogang District, Guangzhou, P. R. ChinaTel: 86-20-38601850Fax:86-20-38601272E-mail: info@mornsun.cnwww.mornsun-power.com

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

2023.09.14-A/1 Page 10 of 10