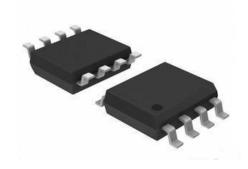
MORNSUN®

SCM3401A Half-duplex Transceiver

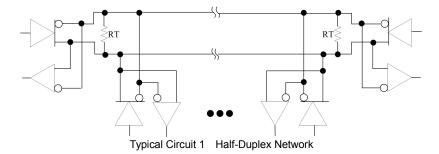

Features

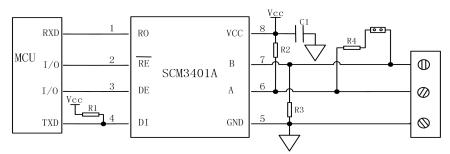
- 5.0V single supply operation
- Baud Rate Up to 1Mbps
- 1/8 Unit Load—Up to 256 Nodes on a Bus
- Low Quiescent Power(– 0.3mA Active Mode)
- 50nA Shutdown Mode
- Bus-Pin ESD Protection Up to 15 KV
- Driver short circuit protection

Applications

- Industrial Automation
- Building Automation
- Smart Electricity Meter
- Remote Signal Interaction, Transmission

Package


Optional Packaging of Product : SOP-8 (see "Ordering information" for details).


Functional Description

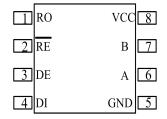
SCM3401A is a half-duplex enhanced transceiver designed for RS–485 data bus networks. Powered by 5V supply, the SCM3401A is fully compliant with TIA/EIA-485A standard and is suitable for data transmission of up to 1 Mbps. Receivers have an exceptionally high input impedance, which places only 1/8 of the standard load on a shared bus and up to 256 transceivers.

The reliability design of A B pin is emphasized, including driver output over current protection and enhanced ESD design. The ESD protection level of A,B pin can be up to 15KV (Human Body Model).

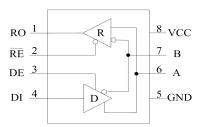
Typical Application Circuit

Typical Circuit 2 Application Diagram

MORNSUN®


MORNSUN Guangzhou Science & Technology Co., Ltd.

Contents


Feature and Package	1
Applications	
Functional Description	
Typical Application Circuit	. 1
Pin Connection	2
Internal Block Diagram	.2
Function Table	.2
Pin Description	
Absolute Maximum Rating	.3
Recommended Operatinging Conditions	. 3

Electrical Characteristics	3
Transmission Characteristic	4
Typical Performance Curves	4
Test Circuits	6
Detailed Description	9
Expansion output design	9
Suggestions for Power Supply	9
Order Information	
Package Information	10
Tape & Reel Information	11

Pin Connection

Internal Block Diagram

Function table

			Driver						Receiver	
Input			Output				Input		Output	
	RE	DE	DI	Α	В		RE	DE	A-B	RO
	Х	Н	Н	Н	L		L	Х	≥-10mV	Н
	Х	Н	L	L H			L	Х	≤-200mV	L
	L	L	Х	Z Z			L	Х	Open/Short	Н
	Н	L	Х	Z (SHUTDOWN)			Н	Н	Х	Z
							Н	L	Х	Z (SHUTDOWN)

Pin descriptions

Pin Number	Pin Name	Pin Functions
1	RO	Receiver Output. When \overline{RE} is low and if $(A - B) \ge -10$ mV, RO is high. If $(A - B) \le -200$ mV, RO is low.
2	RE	Receiver Output Enable. When RE is low, RO is enabled. When RE is high, RO is high impedance. Drive RE high and DE low to enter shutdown mode.
3	DE	Driver Output Enable. When DE is high, outputs are enabled. When DE is low, outputs are high impedance. Drive DE low and RE high to enter shutdown mode.
4	DI	Driver Input.
5	GND	Ground.
6	А	Non-Inverting Driver Output / Receiver input.
7	В	Inverting Driver Output / Receiver input.
8	VCC	Positive Supply VCC. Bypass to GND with a 0.1uF capacitor.

MORNSUN®

Parameters	Min	Max	Unit
Supply voltage range, Vcc	-0.3	6	V
Voltage range at A or B	-8	13	V
Voltage range at DE、DI、RE、RO	-0.3	6	V
Storage Temperature	-55	150	°C
Soldering Temperature (Allowable reflow soldering temperature of chip within 10 seconds)		300	°C

Important: Exposure to Absolute Maximum Rated conditions for an extended period may severely affect the device reliability, and stress levels exceeding the "Absolute Maximum Ratings" may result in permanent damage.

Recommended Operating Conditions

Recommende	ed Operating Conditions	Min	Тур	Max	Unit
Supp	ly Voltage, V _{VCC}	4.5	5	5.5	
Voltage at any bus termin	nal (differential or common mode), V _I	-7		12	V
High-level input	voltage(DI, DE, RE), V _{IH}	2		VCC	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Low-level input	voltage(DI, DE, RE), V _{IL}	0		0.8	
Output current	Driver	-60		60	mA
Output current	Receiver	-8		8	IIIA
Differential load resistance		54	60		Ω
S	Signaling rate				Kbps
Operating ambier	Operating ambient temperature, T _A in free–air				$^{\circ}$
Operating ju	ınction temperature, T _J	-40		125	$^{\circ}$

Electrical Characteristics

General test conditions and V_{VCC} = 5V, T = 25 $^{\circ}$ C (unless otherwise specified).

	Parame	eters	Conditi	ons	Min	Тур	Max	Unit
Digital Input	Signals: DI, D	E, RE						
Logic input thresholds			High, \	V _{IH}	2			V
			Low, \	J _{IL}			0.8	7 V
Driver								
Differential Driver Output (VoD)			No Lo	ad			V _{VCC}	V
Di	fferential Driv	er Output (1)	RL=54Ω, Fi	gure 16	1.5	2.0		
Di	fferential Drive	er Output (2)	V _{CM} = -7 ~ 12V	, Figure 17	1.5		V _{VCC}	_ V
Driver	Common Mod	de Output Voltage	Figure	18	1		3	V
Change i	n Common M	lode Output Voltage	Figure	18			±0.2	V
Drive	er Short Circu	it Current Limit	-7V≤V _{OUT}	≤12V		±110	±250	mA
Receiver		-						
Receiver Input Resistance		Resistance	-7V≤V _{OUT}	≤12V	96			ΚΩ
		(4.5.:.)	DE=0, RE =0,	V _{OUT} =12V		190	250	uA
	Input Current (A, B pins)		V _{VCC} =0 or 5.5V	V _{OUT} = -7V		-110	-200	uA
Change in m	agnitude of di	fferential output voltage	I _O = ±8	mA	-200		-10	mV
F	Receiver Input	t Hysteresis				30		mV
D : 0		V _{OH} , Figure 23	I _{OUT} = 5	imA	V _{VCC} -0.5			1,,
Receiver Ou	tput voltage	V _{OL} , Figure 24	I _{OUT} = -5	5mA			0.4	V
Supply and F	rotection				1			
	Driver a	nd receiver enabled	DE = V _{VCC} , RE	= 0,No load		250	900	uA
	Driver ena	bled, receiver disabled	DE = V _{VCC} , RE =	V _{VCC} , No load		250	900	uA
l _{vcc}	Receiver e	nabled, driver disabled	DE = V _{VCC} , RE			220	600	uA
	Driver and receiver disabled		DE = 0, \overline{RE} = V	vcc, No load		0.05	1	uA
		5	A, B and			±15		KV
ESD	Hur	man Body Model	Other p	pins		±4		KV
EFT	II	EC61000-4-4	A, B and	GND		±1		KV

MORNSUN®

Parameters	Conditions	Min	Тур	Max	Unit
Driver					
Data Signaling Rate	Duty Cycle 40% ~ 60%			1000	Kbps
Driver Propagation Delay (T _{PHL,} T _{PLH})				100	ns
Driver Output Rise/Fall Time ($T_{R_1}T_F$)	$R_L = 54\Omega, C_L = 50pF$, Figure 19			100	ns
Driver Differential Skew (T _{PHL} - T _{PLH})		-50		50	ns
Driver Enable to Output High (T _{PZH})			100	500	ns
Driver Enable to Output Low (T _{PZL})			100	500	ns
Driver Disable from Output High (T _{PHZ})	$R_L=110\Omega$, $\overline{RE}=0$, Figure 20, Figure 21		50	100	ns
Driver Disable from Output Low (T _{PLZ})			50	100	ns
Shutdown to Driver Output Valid (T _{PZH(SHDN),} T _{PZL(SHDN)})	R_L =110 Ω , \overline{RE} =V _{VCC} , Figure 20,Figure 21		50	100	ns
Receiver			•	1	
Receiver Propagation Delay (TPLH, TPHL)	C = 45nF Figure 22		50	100	ns
Receiver Differential Skew (TPLH - TPHL)	C_L = 15pF, Figure 22	-50		50	ns
Receiver Output Rise/Fall Time (T _R , T _F)	C _L = 15pF, V _{DI} =-1.5V~1.5V, Figure 22			15	ns
Receiver Enable to Output High (T _{PZH})			20	50	ns
Receiver Enable to Output Low (T _{PZL})	C = 45 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		20	50	ns
Receiver Disable from Output High (T _{PHZ})	C _L = 15pF, Figure 23, Figure 24		20	50	ns
Receiver Disable from Output Low (T _{PLZ})			30	50	ns
Shutdown to Receiver Output Valid (T _{PZH(SHDN)} , T _{PZL(SHDN)})	C _L = 15pF, DE = 0V, Figure 25		500	1000	ns
Time to Shutdown		50		600	ns

Typical Performance Curves

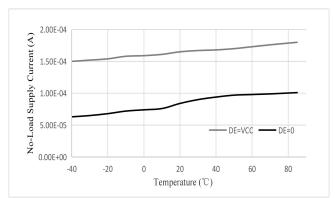


Figure 1 No-Load Supply Current VS Temperature

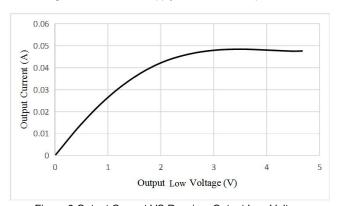


Figure 3 Output Current VS Receiver Output Low Voltage

Figure 2 Output Current VS Receiver Output High Voltage

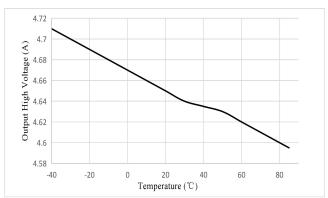


Figure 4 Receiver Output High Voltage VS Temperature

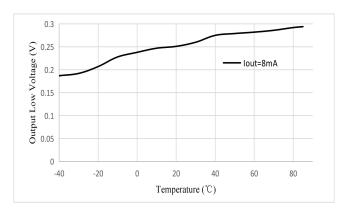


Figure 5 Receiver output low voltage VS Temperature



Figure 7 Driver Differential Output Voltage VS Temperature

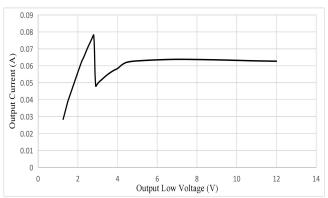


Figure 9 Output current VS Transmitter output low voltage

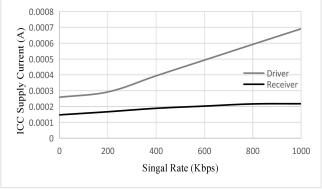


Figure 11 RMS Supply Current VS Signaling Rate

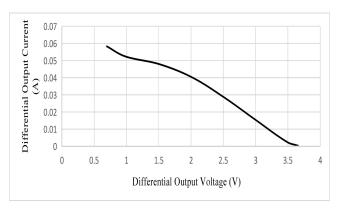


Figure 6 Driver differential output current VS Differential output voltage

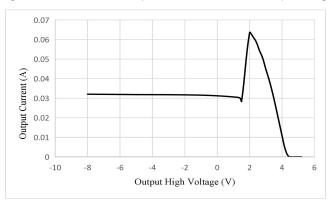


Figure 8 Output current VS Transmitter output high voltage

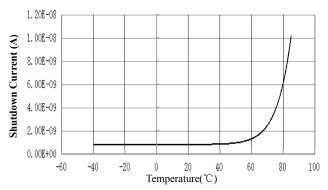


Figure 10 Shutdown Current VS Temperature

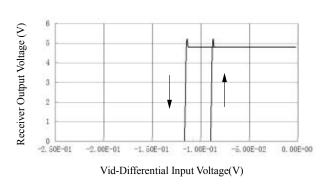
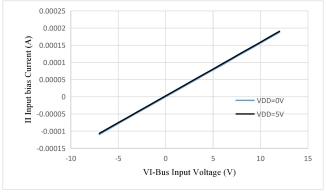



Figure 12 Receiver output voltage VS Differential input voltage

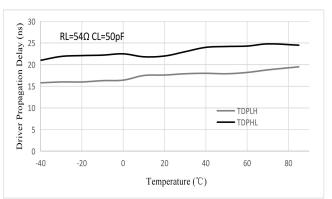


Figure 14 Driver propagation delay VS Temperature

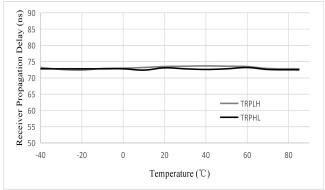


Figure 15 Receiver Propagation Delay VS Temperature

Test Circuits

NOTE: Load test capacitance includes probe and test fixture stray capacitance, unless otherwise specified. Signal generator with following characteristics: Rise and fall time < 6ns, pulse rate 100kHz, 50% duty cycle, $ZO = 50\Omega$ (unless otherwise specified).

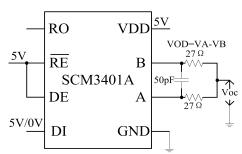


Figure 16 Driver Test Circuit, V_{OD} and V_{OC} Without Common-Mode Loading

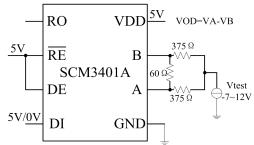


Figure 17 Driver Test Circuit, VoD With Common-Mode Loading

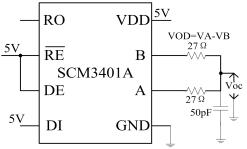


Figure 18 Driver Voc Test Circuit

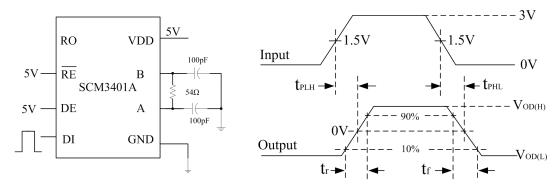


Figure 19 Driver Switching Test Circuit and Waveforms

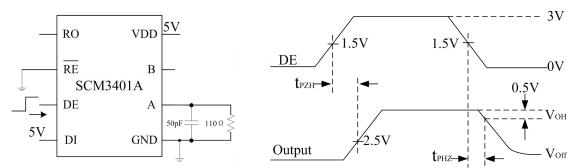


Figure 20 Driver Enable/Disable Test Circuit and Waveforms, High Output

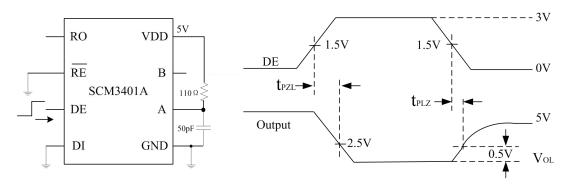


Figure 21 Driver Enable/Disable Test Circuit and Waveforms, Low Output

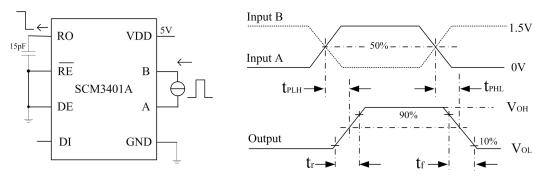


Figure 22 Receiver Switching Test Circuit and Waveforms

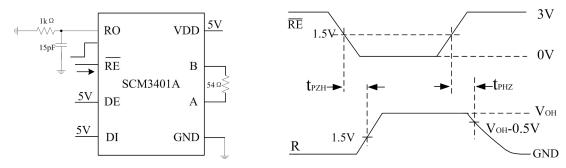


Figure 23 Receiver Enable/Disable Test Circuit and Waveforms, Data Output High

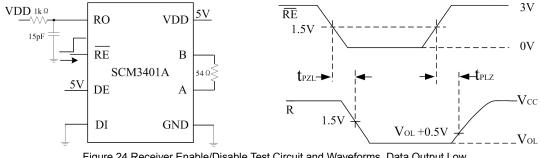


Figure 24 Receiver Enable/Disable Test Circuit and Waveforms, Data Output Low

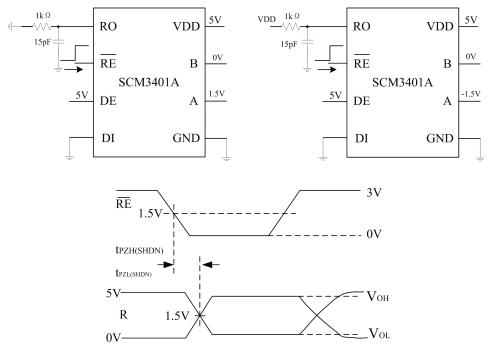


Figure 25 Receiver Enable from Shutdown Test Circuit and Waveforms

Detailed Description

The SCM3401A series are advanced RS-485 transceivers. They each contain one driver and one receiver. These devices feature a fail-safe circuitry that guarantees a high receiver output voltage when the receiver inputs are either open, shorted or when they are connected to a terminated transmission line with all drivers disabled. These devices operate with a single 5.0V supply. Drivers limit the output current by over current protection, to avoid the damage to the transceivers.

Receiver input filter

The SCM3401A receivers have an integrated input filter which enhances noise immunity of the high-speed differential signals. The receiver propagation delay increases due to this filtering.

Bus fail-safe

Ordinary RS485 bus receivers will be in an indeterminate state when -200mV< A - B <-10mV. This situation can occur whenever the data bus is not being actively driven. The advanced Fail-safe feature of the SCM3401A guarantees a high receiver output voltage if the receiver's differential inputs are either shorted, open circuit, or if they are connected to a termination resistor.

The SCM3401A receiver thresholds are very precise, and the offset between threshold voltage and ground has a margin of at least 10mV. This guarantees that the receiver output is a high voltage even the input differential is zero volts, thus maintaining compliance with the EIA/TIA-485 standard.

Load abilities on the bus (256 nodes)

The standard receiver input impedance of RS-485 is $12k\Omega$ (1 unit load). A standard RS485 driver can drive at least 32 unit loads. The SCM3401A transceiver is design to 1/8th of the standard unit load and the input impedance is higher than $96k\Omega$, hence allowing up to 256 unit loads, in other words eight times as many. The SCM3401A can work combined with other standard RS485 that use the smaller amount of unit loads.

Low power shunt down mode

Å low-power shutdown mode is triggered by simultaneously bringing \overline{RE} high and DE low. During shutdown mode the device supply current is 50nA typical. DE and \overline{RE} can be directly connected and controlled by the same I/O. The devices are guaranteed not to enter shutdown mode if \overline{RE} is high and DE is low for less than 50ns. If this state is maintain for at least 600ns, the device will shut down reliably.

Driver output protection

The device prevents excessive output current caused by fault conditions or driver short circuit. A driver current limit on the output stage provides and ensures immediate protection against short circuits over the entire common mode voltage range.

Expansion Output Design

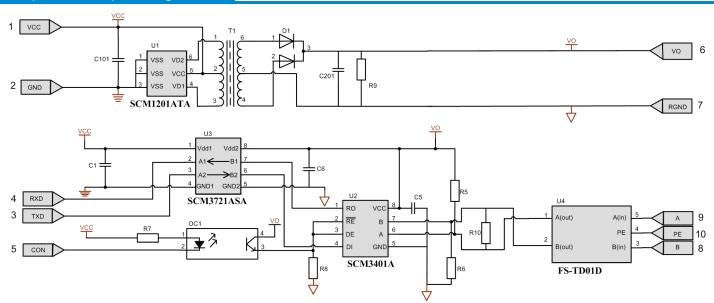
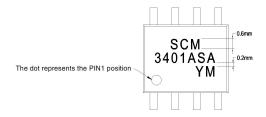


Fig. 26 Schematic diagram of isolation application circuit for UART to RS485 signal

Suggestions for Power Supply

If the input power is a few inches from the SCM3401A, as much as possible, connect a 0.1µF bypass capacitor to the VCC pin and a 10µF capacitor near the center tap pin of the transformer.

Ordering Information

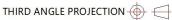

Part number	Package	Number of pins	Product Marking	Tape & Reel
SCM3401ASA	SOP	8	SCM 3401ASA YM	3K/REEL

Product marking and date code

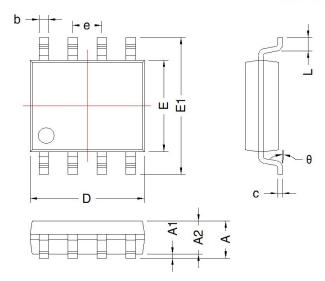
SCM3401XYZ:

- (1) SCM3401 = Product designation.
- (2) X = Version code information (A-Z).
- (3) Y = Packaging definition code; S for SOP package,
- (4) Z = Operating temperature range (C = 0 $^{\circ}$ C to +70 $^{\circ}$ C, I =-40 $^{\circ}$ C to +85 $^{\circ}$ C, A =-40 $^{\circ}$ C to +125 $^{\circ}$ C, M = -55 $^{\circ}$ C to +125 $^{\circ}$ C) .
- (5) YM = Date code for product traceability; Y = code for production year; M = code for production month.

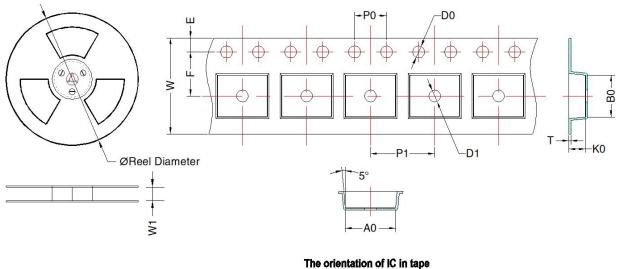
Silk Screen Information



Note:


- Typeface: Arial;
 Character size:

Height: 0.6mm, Spacing: 0.1mm, LineSpacing: 0.2mm;


Package Information

		SOP-8		
N.A. arda	Dimens	ion(mm)	Dimensi	on(inch)
Mark	Min	Max	Min	Max
Α	1.35	1.75	0.053	0.069
A1	0.1	0.25	0.004	0.010
A2	1.35	1.55	0.053	0.061
D	4.8	5.0	0.189	0.197
Е	3.8	4.0	0.150	0.157
E1	5.8	6.2	0.228	0.244
L	0.4	0.8	0.016	0.032
b	0.33	0.51	0.013	0.020
е	1.27	TYP	0.05	TYP
С	0.17	0.25	0.0067	0.001
θ	0°	8°	0°	8°

User Direction of Feed

Device	Package Type	MPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	T (mm)	W (mm)	E (mm)	F (mm)	P1 (mm)	P0 (mm)	D0 (mm)	D1 (mm)
SCM3401ASA	SOP-8	3000	330.0	12.4	6.5 ± 0.2	5.45 ± 0.2	2.0 ± 0.2	0.3 ± 0.05	12.0 ± 0.3	1.75 ± 0.1	5.5 ± 0.1	8.0 ± 0.1	4 ± 0.1	1.5 ± 0.1	1.5 ± 0.1

Mornsun Guangzhou Science & Technology Co.,Ltd.

Address: No.5,Kehui St.1,Kehui Development Center,Science Ave.,Guangzhou Science City,huangpu District,Guangzhou,P.R.China
Tel: 86-20-38601850 Fax: 86-20-38601272 Email: info@mornsun.cn