MORNSUN[®]

SCM1103C Highly Integrated PWM Controller

Features

- Built-in soft start
- BOS pin reuse, realize over-temperature protection and synchronous rectifier signal function
- RI pin optional jitter frequency function
- · Frequency reduction at light load and burst mode control under no load
- Programmable maximum switching frequency
- Built-in slope compensation
- Cycle-by-Cycle current limiting
- VDD over-voltage protection
- VDD under-voltage lockout
- Open loop and output short circuit protection
- Input under-voltage protection

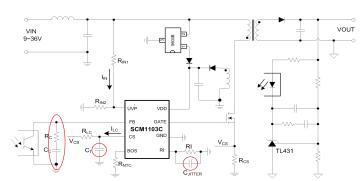
Application

DC-DC isolated converter

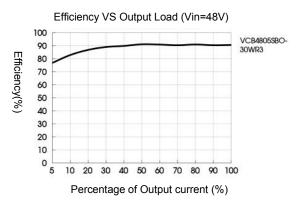
Functional Description

Package

Optional package of product: MSOP-8. Please see "Ordering information" for details)"



Optional package of product: DFN3X3-8L. Please see "Ordering information" for details)"

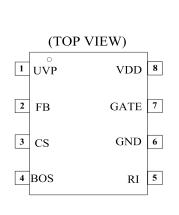

SCM1103C is a highly integrated current mode PWM controller, applicable to isolating DC-DC converter. SCM1103C has a functional multiplexing pin BOS, which can be connected with thermistor NTC to realize over-temperature protection function, and can also realize synchronous rectifier signal transmission function (combined with the auxiliary synchronous rectifier chip). However, according to users' requirements, only one of the two functions can be chosen. Inside the SCM1103C, the PWM switching frequency is internally adjusted within a tight range. It can change its maximum operating frequency by connecting with different resistors externally. Under light load, operating frequency of chip reduces with load decrease, thus allow Converter to maintain high efficiency within the whole load range. the power supply enters into a burst mode under no load conditions, which reduces standby power consumption greatly.

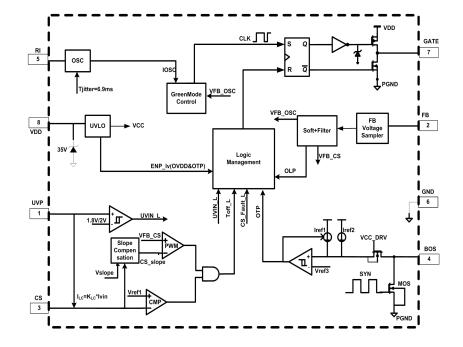
Besides, a series of protection functions are integrated in the SCM1103C to improve system reliability, including VDD under-voltage lockout (UVLO), VDD over-voltage protection (OVP), open loop/output short circuit/overload protection (OLP), CS pin floating protection and input under-voltage protection.

Typical Application Circuit

Functional Curve

MORNSUN®


MORNSUN Guangzhou Science & Technology Co., Ltd. 2022.08.17-A/2 Page 1 of 15


Contents

Features1	Recommended Operating Conditions 3
Package1	Electrical Characteristics
Application1	Typical Curve5
Functional Description1	Parameter Measurement Information6
Typical Application Circuit1	Functional Application6
Functional Curve1	Overview7
Pins2	Application Circuit10
Internal Block Diagram2	Power Supply Recommendations11
Pin Descriptions2	Ordering Information11
Absolute Maximum Ratings	

Pins

Internal Block Diagram

Pin Description

Number	Name	I/O	Description
1	UVP	I	Input voltage detect pin, DC input voltage connect divider resistance to UVP pin, (resistance proportion can adjust input under-voltage point).
2	FB	I	Voltage feedback pin. It formulates feedback loop by opto-coupler and adjusts PWM signal duty ratio with current sampling (CS) signal.
3	CS	I	Current sampling input port.
4	BOS	I	BOS pin reuse, realize over-temperature protection with externally NTC resistor and also can achieve synchronous rectifier signal transmission function with externally a port of air-core transfor. Two functions option.
5	RI	I	Set up maximum operating frequency for chip via externally earthed resistor. This external resistor in parallel with capacitor realizes frequency jittering and improves EMI performance.
6	GND	Р	Chip reference ground.
7	GATE	0	MOSFET drive port.
8	VDD	Р	Chip power supply port.

MORNSUN[®]

 MORNSUN Guangzhou Science & Technology Co., Ltd.

 2022.08.17-A/2
 Page 2 of 15

 MORNSUN Guangzhou Science & Technology Co.,Ltd.reserves the copyright and right of final interpretation

Absolute Maximum Ratings General test conditions: Free-air, normal operating temperature range (unless otherwise specified)

Parameter	Symbol	Minimum	Maximum	Unit
Bias supply voltage	Vvdd		35	V
VDD clamp current			10	mA
GATE pin voltage	VDRV	-0.6	35	
	FB,CS,RI	-0.6	6	V
Voltage range	UVP	-0.6	6	v
	BOS	-0.6	36	
Working junction temperature	TJ	-40	150	
Storage temperature	T _{STG}	-55	150	°C
Soldering Temperature (Allowable reflow soldering temperature of chip within 10 seconds)			260	U
Moisture sensitivity level	MSL	MS	MSL3	
Rated value of electrostatic discharge (ESD)	Human body model (HBM)		5000	V
Rated value of electrostatic discharge (ESD)	Charging device model (CDM)		1000	v

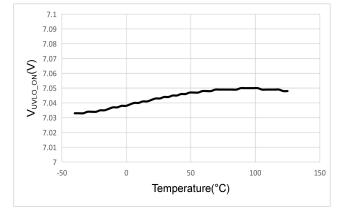
Note: exceeding stress value listed in the "maximum rating" table may cause permanent damage to components. If working under extreme conditions for a long time, reliability of components may be affected. All voltage values is on the basis of GND.

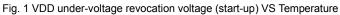
Recommended Operating Conditions

Electrical Characteristics

Parameter	Symbol	Minimum	Maximum	Unit
Bias supply voltage	Vvdd	10	18	V
VDD Bypass Capacitor	Cvdd	1	20	μF
Operating frequency	Fosc	220	500	kHz
Operating ambient temperature	TA	-40	125	C

Unless otherwise specified, the following parameters are measured under normal temperature normal voltage and in unsealed environment.


Symbol Parameter Test condition Minimum Typical Maximum Unit Power Supply (VDD pin) V_{VDD}=6V,test current flowing 240 320 400 μA VDD star-up current ISTART_UP into VDD port Chip operating current V_{FB}=3V,RI=24K 1.4 1.9 2.4 mΑ IVDD_OP After floating BOS and Input under voltage, VDD under star-up, continue to increase voltage lockout or VDD over VDD voltage untile GATE no 240 320 400 FAULT μΑ voltage protection current output pulse, observe current flowing to VDD port Release VDD under voltage VDD from low to high, BOS 6.6 7.1 7.6 V VUVLO ON lockout (start) pin floats or be earthed 6.15 V VUVLO_OFF VDD under voltage lockout VDD from high to low 5.7 6.6 VDD over voltage protection VDD is 15V~25V,VFB=3V, V 20.4 22 23.6 VVDDOVP_ON Threshold BOS pin floats or be earthed VDD is 25V~10V,V_{FB}=3V VDD over voltage OFF voltage 14.5 15.6 16.7 V VVDDOVP_OFF BOS pin floats or be earthed VDD over voltage protection 6.4 V VVDDOVP HYS hysteresis VDD absorption current ٧ VCLAMP VDD clamping voltage 31.5 35 38.5 increases suddenly Input Voltage Detection pin (UVP pin) R_{IN1}=500K,R_{IN2}=100K,RI=24K UVP pin input under-voltage V VUVP_OFF ,VIN=12V~9V 1.71 1.8 1.89 protection voltage BOS pin floats or be earthed R_{IN1}=500K,R_{IN2}=100K,RI=24K UVP pin input under-voltage ,VIN=9V~14V VUVP_ON 1.9 2 2.1 V release voltage BOS pin floats or be earthed UVP pin input under-voltage VUVP HYS 0.2 V hysteresis UVP pin clamping voltage VUVP_CLAMP 2.23 2.4 2.57 V Feedback Voltage Input pin (FB pin) AV CS ∆V_{FB}/∆V_{CS} 3.67 V/V PWM input gain VFB_OPEN FB open circuit voltage 4.95 5.36 6.05 V Current when FB is earthed FB short circuit current 1.05 1.28 1.57 mΑ IFB_SHORT FB input resistance 4.2 KΩ ZFB IN FB over-voltage protection VTH PL 4.54 ٧ threshold value FB voltage threshold when VTH_FBUVP 0.93 1.1 1.27 V entering Burst mode 0.1 V VHYS_FBUVP FB voltage threshold return


MORNSUN[®]

MORNSUN Guangzhou Science & Technology Co., Ltd. 2022.08.17-A/2 Page 3 of 15

	difference in Burst mode					
Vth FR	Quick dynamic response threshold			0.7		V
Current Detection Input pin (1 1		
V _{CST_MAX}	Maximum limiting current threshold		0.76	0.8	0.84	V
Over-temperature protection	or synchronous rectifier transmission	pin (BOS pin)				1
I_ _{BOS}	BOS pin output current	BOS connect 40K to ground,RI=24K	73.8	81.8	90.2	μA
VTH_OTP_ON	Trigger threshold for over-temperature protection	BOS Voltage from 1.7V to 2.1V	1.8	1.9	2.0	V
VTH_OTP_OFF	Cancel threshold for over-temperature protection	BOS Voltage from 1.8V to 2.2V	1.9	2.0	2.1	V
Tpulse_ _{BOS}	BOS pulse	BOS connect 10K resistor to VDD	10	50	90	ns
Oscillator (RI pin)				11		
Fosc	Oscillator frequency	RI=24K、V _{FB} =3V	272	287	302	KHz
FJITTER	RI pin frequency jittering	RI=24K,CI=2nF		145		Hz
△F/Fosc	Frequency jitter range		-6		6	%
△F _{TEMP}	Temperature stability of frequency	_40℃ ~ 125℃		±2		%
	Frequency change with VDD	Vvpp=7~16V		±2		%
DMAX	Maximum duty ratio	CS be earthed, V _{FB} =4.5V	75	79	83	%
	RI variation range		14	24	31	ΚΩ
VRI OPEN	RI open circuit voltage		1.9	2	2.1	V
F _{вм}	Operating frequency in BURST mode	V _{FB} =1.27V,RI=24K		120		KHz
Driving pin (GATE pin)		11				1
V _{GCL}	GATE clamp voltage	V _{VDD} =18V,C _{GATE} =1nF		15		V
T _R	Output rise time	C _{GATE} =1nF		50		nS
T _F	Output fall time	C _{GATE} =1nF		35		nS
Time Parameters (TIMING)					
T _{D_OVP}	VDD over-voltage protection delay time			100		μS
T _{D_UVIN}	Input under-voltage protection delay time			70		μS
T _{D_OPP}	CS floating protection delay time	CS=2V,T _{SW} switching period		2*Tsw		
T _{D_PL}	Over-power protection delay time	RI=24K(calculate by F _{osc} =287kHz)T _{osc} =1/F _{osc}		35.68(102 40*Tosc)		mS
Tsleep	Over-power protection/open loop protection/VFB over-voltage protection sleeping time	RI=24K(calculated by Fosc=287kHz)Tosc=1/Fosc		1.827(524 288*T _{OSC})		mS

Typical Curve

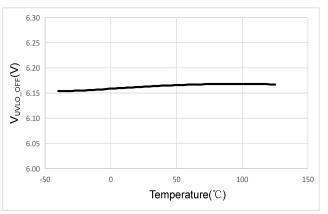
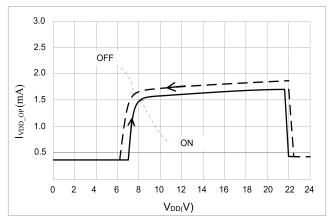
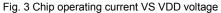




Fig. 2 VDD under-voltage locking VS Temperature

MORNSUN[®]

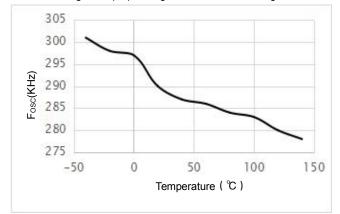


Fig. 5 Operating frequency VS Temperature

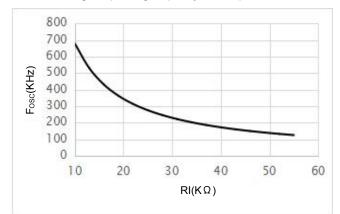


Fig. 7 Operating frequency VS RI pin resistance

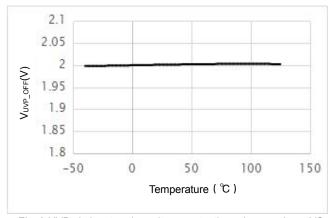
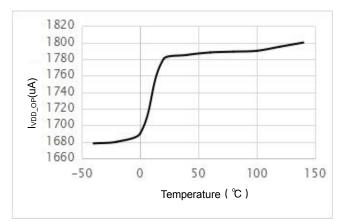
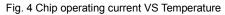




Fig. 9 UVP pin input under-voltage protection release voltage VS Temperature

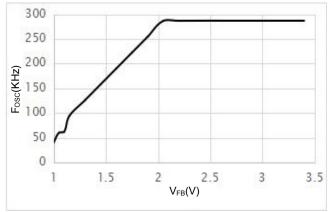


Fig. 6 Operating frequency VS V_{FB} voltage



Fig. 8 UVP pin input under-voltage protection voltage VS Temperature

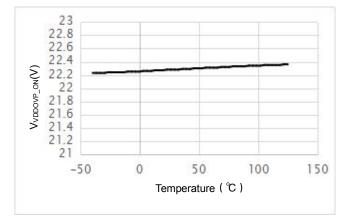
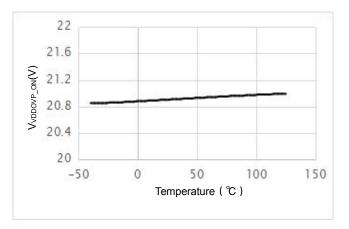
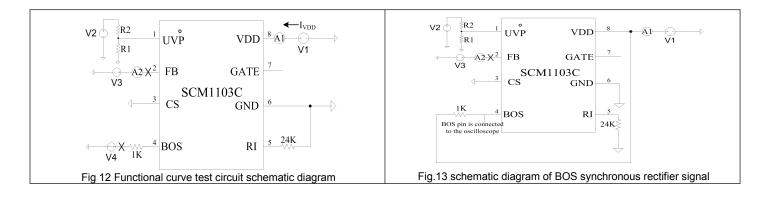
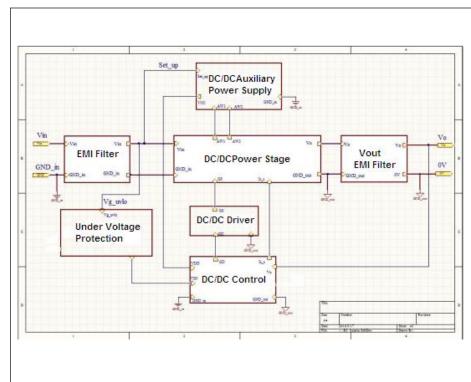


Fig. 10 VDD over-voltage protection voltage (full load) VS Temperature

MORNSUN[®]

MORNSUN Guangzhou Science & Technology Co., Ltd. 2022.08.17-A/2 Page 5 of 15


Fig. 11 VDD over-voltage protection voltage (idle load) VS Temperature

Note: unless otherwise specified, typical characteristic curve is obtained under V_{DD}=12V,RI=24kΩ, normal pressure and temperature.

Parameter Measurement Information

Functional Application

The chip can be applied to flyback topology converters. The functional block diagram is shown on the left. The working principle of this circuit is to store energy to the transformer when the MOS is on, and release energy to the output capacitor when the MOS is off. At the output end, an appropriate Pi filter is used to smooth the square wave pulse into a small ripple dc voltage output, whose value is equal to the average of square wave pulse.

In the output of the circuit, resistance to voltage output voltage sampling, sampling and the sampling error comparator voltage V_{fb} to EA place compared with the positive input vlotage comparator benchmark, the error of the amplified voltage V_{EA} through optical coupling is input to the IC FB side, and the other end(in-phase input)of current signal(sawtooth wave signal), thus controlling the duty ratio, and then through the condunction of the totempole output pulse drive MOS and shutoff, realize the stability of the output voltage.

MORNSUN®

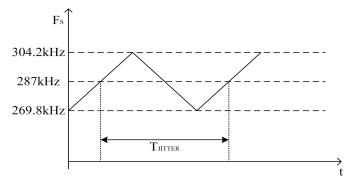
MORNSUN Guangzhou Science & Technology Co., Ltd. 2022.08.17-A/2 Page 6 of 15

Chip Description

SCM1103C is a highly integrated current mode PWM controller, applicable for offline DC-DC isolated converter. Its most important features are: first, under light load, it reduce frequency as load reduces, thus it improves light load efficiency.and when it gets close to no load, it works at BURST mode which reduces standby power consumption; second, its protection functions are highly integrated, allowing fewer external devices and reducing PCB area, and ensuring consistency. Third, SCM1103C has a functional multiplexing pin BOS, which can be connected with thermistor NTC to realize overtemperature protection function, and can also realize synchronous rectifier signal transmission function. (combined with the auxiliary synchronous rectifier chip). However, according to user requirements, only one of the two functions can be chosen.

Unless otherwise specified, numerical value below is typical value tested under normal pressure and temperature, and V_{VDD} =12V,RI=24k Ω .

Oscillator Frequency


Maximum operating frequency of the chip (oscillator frequency) F_{MAX} can be set up by RI pin external resistance, frequency settings satisfy the formula below:

$$F_{MAX}(kHz) = \frac{6890}{RI(kQ)} \quad (1)$$

Recommended operating frequency of the chip is between 220kHz and 500kHz (refer to Recommended Operating Conditions for details). If frequency is set up to be too small, RI resistance is big, then RI pin is easy to be interrupted, and minimum frequency will be lower than 22kHz. Under ultralight load, it may create noise; when frequency is set up too high, power consumption of the chip increases, and frequency precision become worse.

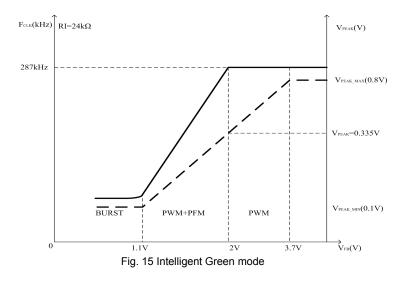
When RI pin external resistance connects one capacitance in parallel and earthed, it enables frequency jittering, distributes energy to scope wider than EMI tester bandwidth, and lowers EMI.

Frequency Jittering range is at ±3% of maximum set up frequency of RI pin external resistance; frequency jittering period is 6.9ms.

Built-in Soft Start

The build-in soft start realized by controlling V_{FB} voltage increasing slowly. The issue of overshoot during starting up will be decreased. After soft start, V_{FB} will not be restricted by soft start circuit. The first start and each restart after protection can perform initialization effectively, ensure that both power-on start and restart after protection revocation have soft start.

Intelligent Green Mode


SCM1103C adjusts oscillator frequency by detecting FB port voltage V_{FB} , that is, adjusting frequency of chip output signal GATE. When $2V < V_{FB} < 3.7V$, chip works in PWM mode, only adjust peak voltage of CS pin, frequency is the highest and constant; when $1.1V < V_{FB} < 2V$, chip enters PWM+PFM mode, which regulates both CS peak voltage and working frequency. As load reduces, frequency lowers gradually; when V_{FB} is lower than 1.1V, chip enters BURST mode, GATE stops output. Curve of work mode changing with V_{FB} is shown in Fig.15

 MORNSUN Guangzhou Science & Technology Co., Ltd.

 2022.08.17-A/2
 Page 7 of 15

 MORNSUN Guangzhou Science & Technology Co.,Ltd.reserves the copyright and right of final interpretation

BURST Mode

Besides intelligent green mode, SCM1103C designed BURST mode internally. When V_{FB} lowers than 1.1V, chip enters to BURST mode, also known as frequency hopping mode. When chip enters BURST mode, chip turns off GATE output. As output load consumption output voltage, opto-coupler current reduces, V_{FB} goes up again. When VFB voltage reaches 1.35V, GATE starts to output pulse. Output voltage of the power supply grow up back to normal after GATE output signal, if V_{FB} is go down lower than 1.1V again, it will enter BURST mode again, and recycling (see Fig.17).

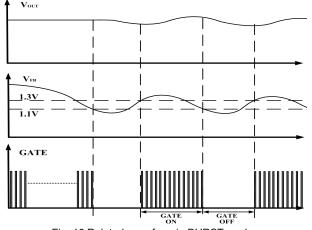


Fig. 16 Related waveform in BURST mode

Built-in Slope Compensation

It adopts two-segment compensation mechanism. When duty ratio is 40%~61%, slope rate is 114mV/µs; when duty ratio is 61%~79%, slope rate is 213mV/µs. This segmented design avoids impact of slope compensation on load capacity. The slope rate above is a typical value measured when RI pin external resistance is 24kΩ.

Input Under Voltage Protection

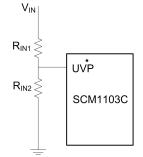


Fig. 17 Electrical block diagram of input under voltage

 MORNSUN Guangzhou Science & Technology Co., Ltd.

 2022.08.17-A/2
 Page 8 of 15

 MORNSUN Guangzhou Science & Technology Co.,Ltd.reserves the copyright and right of final interpretation

When
$$V_{IN} \cdot \frac{R_{IN2}}{R_{IN1} + R_{IN2}} < 1.8V$$
 enter input under voltage protection;

When $V_{IN} \cdot \frac{R_{IN2}}{R_{IN1} + R_{IN2}} > 2V$ revoke input under voltage protection.

BOS Over-temperature protection

The BOS pin of SCM1103C is connected to the ground by an external thermistor NTC resistor.

Over temperature protection trigger and undo conditions:

$$\frac{Vref_{2V}}{R_{I}} \times K \times (R_{NTC_{ON}} + R_{1}) \leq Vref_{1p9V}$$

$$\frac{Vref_{2V}}{R_{I}} \times K \times (R_{NTC_{OFF}} + R_{1}) \geq Vref_{2V}$$

R1 is resistor from RI to NTC,K=8/8°

Syncthronous

When the BOS pin of SCM1103C is connected with a hollow transformer, another synchronous rectifier can be realized. One port of the original side of the hollow transformer is connected with VDD, and the other port is connected with the BOS pin of the chip.

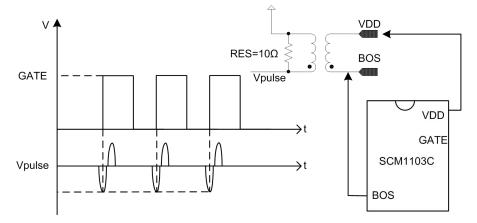
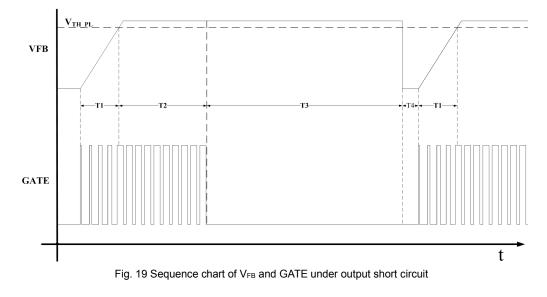


Fig 18 Schematic diagram of BOS pin to transmit synchronous rectifier signal

FB pin Over-Voltage Protection

When the situation that FB pin voltage V_{FB} being greater than 4.5V lasts longer than T_{D_PL} (refer to electric features, that is 24576T_{OSC}), then it is considered that FB pin is over voltage. Turn off GATE by force and enter FB pin over voltage protection rest state; if before cumulative time reaching T_{D_PL} , V_{FB} is lower than 4.5V, it will not trigger FB pin over voltage protection; duration of FB pin over voltage sleep state is T_{SLEEP} (refer to electric features, that is 2¹⁸T_{OSC}), after reaching T_{SLEEP} , withdraw FB pin over voltage protection and revoke forced turn off action on GATE, meanwhile soft start reset and pull down V_{FB} . If there is no other protection, chip will soft start again.

Over power protection (OPP)/output short circuit protection (OSP)/open loop protection (OLP) can realize by FB pin over voltage protection, as over power, output short circuit and open loop will cause V_{FB} to rise above 4.5V.


The chart below is a sequence chart of V_{FB} voltage and GATE signal in event of output short circuit. T1 period is soft start process. V_{FB} follows soft start voltage V_{soft} inside the chip; T2 period is FB pin over voltage protection delay time, GATE is not cut off by force; T3 is V_{FB} over voltage protection sleep time; when T3 ends, it enters soft start reset process, and soft start again. When chip starts or restarts, only after passing four rounds internal clock periods counting, will GATE output pulse. T4 indicates these four internal clock periods, also called initial shield. If output short circuit remains, the above process will repeat periodically.

 MORNSUN Guangzhou Science & Technology Co., Ltd.

 2022.08.17-A/2
 Page 9 of 15

 MORNSUN Guangzhou Science & Technology Co.,Ltd.reserves the copyright and right of final interpretation

VDD pin Over-Voltage Protection

If voltage at VDD pin exceeds 22V (over-voltage protection point changes with load, 20V minimum under light load, 23.6V maximum at full load), and lasts for 100µs, then chip enters VDD over-voltage protection state, GATE has no signal output; only when VDD voltage is lower than 15.6V, chip will withdraw VDD over-voltage protection signal, soft start reset. After resetting, proceed soft start process, and GATE outputs normally.

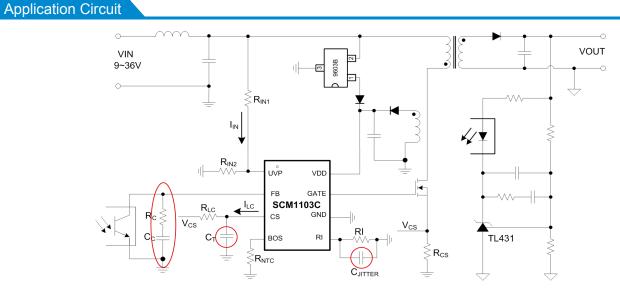


Fig. 20 Typical application circuit 1, BOS pin connected with a NTC resistor to ground to realize over-temperature. Components in the red circle are optional.

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd. 2022.08.17-A/2 Page 10 of 15

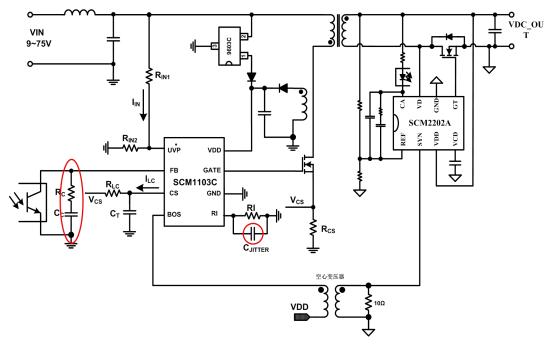


Fig. 21 Typical application circuit 2, BOS pin to transmit synchronous rectifier signal Components in the red circle are optional.

Power Supply Recommendations

1.VDD pin bypass capacitor is recommended to be more than $10\mu F$ to ensure normal power supply of VDD.

2.BOS pin should be wired as short and straight as possible, away from sensitive signals.

3.In order to ensure accurate detection of over-temperature protection, can be added to the ground filter capacitor to BOS pin.

4.It is recommended that the external resistance of the UVP be large. And it is also recommended that the current flowing into the UVP be 10-100uA

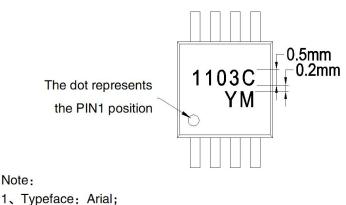
Ordering Information

Part number	Package	Number of pins	Product Marking	Tape & Reel
SCM1103CMA	MSOP	8	1103C YM	4K/REEL
SCM1103CFA	SCM1103CFA DFN3X3		1103C YM	5K/REEL

Product marking and date code

SCM1103XYZ:

(1) SCM1103, Product designation.

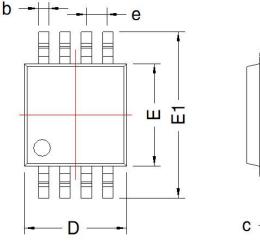

(2) X = A-Z, Version code information.

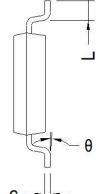
(3) Y = S,M,Packaging definition code;; S: SOP package; M: MSOP package.F: DFN package.

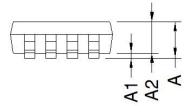
(4) Z = C,I,A,M,temperature level code; C: 0°C-70°C,I: -40°C-85°C,A: -40°C-125°C,M: -55°C-125°C,M: -55°C,M: -55°

(5) YM: product traceability code; Y indicates product production year code, M indicates product production month code.

Silk Screen Information(MSOP-8)

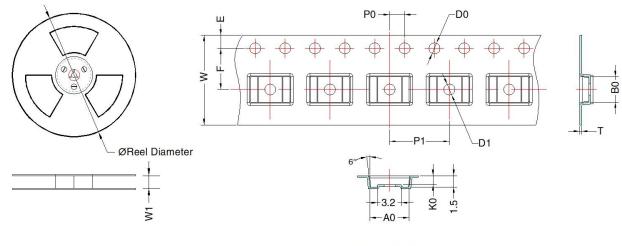

- 2. Character size:
 - Height: 0.5mm, Spacing: 0.1mm, LineSpacing: 0.2mm;




MORNSUN Guangzhou Science & Technology Co., Ltd. 2022.08.17-A/2 Page 11 of 15

THIRD ANGLE PROJECTION

4



		MSOP-8					
Mark	Dimensi	on(mm)	Dimension(inch)				
Mark	Min	Max	Min	Max			
A	0.82	1.10	0.032	0.043			
A1	0.02	0.15	0.001	0.006			
A2	0.75	0.95	0.03	0.037			
D	2.90	3.10	0.114	0.122			
E	2.90	3.10	0.114	0.122			
E1	4.75	5.05	0.187	0.199			
L	0.40	0.80	0.016	0.031			
b	0.25	0.38	0.010	0.015			
е	0.65	ТҮР	0.026	TYP			
С	0.09	0.23	0.004	0.009			
θ	0°	6°	0°	6°			

MORNSUN®

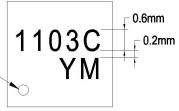
MORNSUN Guangzhou Science & Technology Co., Ltd.

2022.08.17-A/2 Page 12 of 15 MORNSUN Guangzhou Science & Technology Co.,Ltd.reserves the copyright and right of final interpretation

The orientation of IC in tape

 \oplus

Device	Package Type	MPQ	Reel Diameter (mm)	Reel Width W1(mm)	A0 (mm)	B0 (mm)	K0 (mm)	T (mm)	W (mm)	E (mm)	F (mm)	P1 (mm)	P0 (mm)	D0 (mm)	D1 (mm)
SCM1103CMA	MSOP-8	4000	330.0	12.4	5.2 ± 0.1	3.3 ± 0.1	1.2 ± 0.1	0.25 ± 0.05	12.0 ± 0.3	1.75 ± 0.1	5.5 ± 0.1	8 ± 0.1	4 ± 0.1	1.5 ± 0.1	1.5 ± 0.1

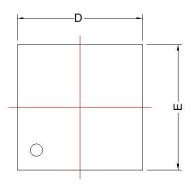


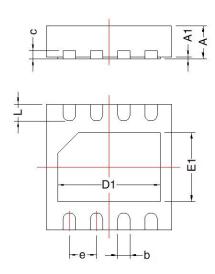
 MORNSUN Guangzhou
 Science
 Technology
 Co.,
 Ltd.

 2022.08.17-A/2
 Page 13 of 15

 MORNSUN Guangzhou
 Science & Technology
 Co.,Ltd.reserves the copyright and right of final interpretation

The dot represents the PIN1 position

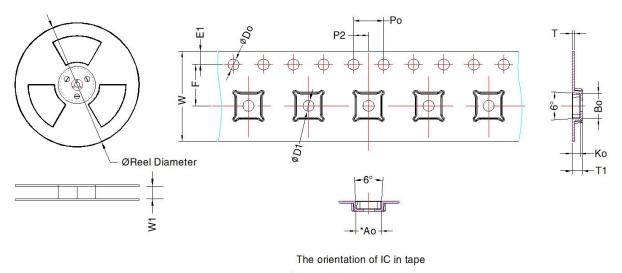

Note:


- 1、Typeface: Arial;
- 2、Character size:

Height: 0.6mm, Spacing: 0.1mm, LineSpacing: 0.2mm;

Package Information (MSOP-8)

THIRD ANGLE PROJECTION


		DFN 3x3-8L				
Mark	Dimensi	on(mm)	Dimension(inch)			
Mark	Min	Max	Min	Max		
Α	0.70	0.80	0.028	0.031		
A1	0	0.05	0	0.002		
С	0.203	BREF	0.008	BREF		
D	3.00	BSC.	0.118BSC.			
D1	2.20	2.40	0.087	0.094		
E	3.00	BSC.	0.118BSC.			
E1	1.40	1.60	0.055	0.063		
L	0.224	0.376	0.009	0.015		
e	0.65	ТҮР	0.026TYP			
b	0.25	0.35	0.001	0.014		
k	0.25	MIN	0.010MIN			

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd. 2022.08.17-A/2

Page 14 of 15

Tape & Reel Information(MSOP-8)

Q1 Q2 Q3 Q4

User Direction of Feed

	Pocket Quadrants															
Device	Package Type	MPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	T (mm)	W (mm)	E (mm)	F (mm)	P1 (mm)	P0 (mm)	D0 (mm)	D1 (mm)	Pin1 Quadrant
SCM1103CFA	DFN 3x3	6100	330.0	12.4	3.34 ± 0.1	3.34 ± 0.1	1.10 ± 0.1	0.30 ± 0.05	12.0 ± 0.3	1.75 ± 0.1	5.5 ± 0.1	8.0 ± 0.1	4.0 ± 0.1	1.5 ± 0.1	1.5 ± 0.1	Q2

Mornsun Guangzhou Science & Technology Co.,Ltd.

Address: No.5,Kehui St.1,Kehui Development Center,Science Ave.,Guangzhou Science City,huangpu District,Guangzhou,P.R.ChinaTel: 86-20-38601850Fax: 86-20-38601272Email: info@mornsun.cn

MORNSUN®

 MORNSUN Guangzhou
 Science & Technology Co., Ltd.

 2022.08.17-A/2
 Page 15 of 15

 MORNSUN Guangzhou Science & Technology Co.,Ltd.reserves the copyright and right of final interpretation