

C € Report

EN 62368-1 BS EN62368-1

FEATURES

- Universal 85 277VAC or 120 390VDC Input voltage
- Wide adjustable output voltage range
- Accepts AC or DC input (dual-use of same terminal)
- Operating ambient temperature range: -40° to +85°
- High efficiency, high reliability
- Active PFC
- High I/O isolation test voltage up to 4000VAC
- Supports 3+1 parallel redundancy
- Supports 485 communication, remote shutdown (PS-ON/OFF)
- Output short circuit, over-current, over-voltage, over-temperature protection
- 5 years warranty
- Operating altitude up to 5000m
- Comply with CISPR32/EN55032, IEC/UL62368, UL60601, GB4943

LMF2000-20Bxx series is one of Mornsun's enclosed AC-DC switching power supply. It features universal AC input and at the same time accepts DC input voltage, cost-effective, low no load power consumption, high efficiency, high reliability and double or reinforced insulation. These converters offer excellent EMC performance and design refer to CISPR32/EN55032, IEC/UL62368, UL60601, GB4943, standards and they are widely used in areas of industrial, LED, street light control, electricity, security, telecommunications, medical, smart home etc.

Selec	ction Guide									
Certifi	Part No.	Output Power		Output Volt urrent (Vo/l	•	Outpu	le Range of t Voltage o1(V)	Efficiency 230VAC (%) Typ.	, ,	
	' (W)		Vo1/lo1	Vo2/lo2	Vo3/lo3	ADJ	Vprog	, , ,	Vo1	Vo2
	LMF2000-20B12	1211	12V/100A	12V/0.8A	5V/0.3A	10.5-14	7.2-14	91	18000	800
EN	LMF2000-20B24	1931	24V/80A	12V/0.8A	5V/0.3A	20-28	9.6-28	92	15000	800
	LMF2000-20B48	2027	48V/42A	12V/0.8A	5V/0.3A	42-56	19.2-56	92	10000	800

Input Specifications								
Item	Operating Conditions		Min.	Тур.	Max.	Unit		
	Rated input (Certified voltage	ge)	100		240	\/^C		
Input Voltage Range	AC input		85		277	VAC		
	DC input		120	-	390	VDC		
Innut Voltage Frequency	Rated input (Certified voltage	ge)	47	-	63	Hz		
Input Voltage Frequency	AC input		47		63	HZ		
	Rated input (Certified voltage	ge)			18.5			
Input Current	115VAC			17	A			
	230VAC	-		12				
law ich Ci ima ad	115VAC	Cold start		20				
Inrush Current	230VAC			40				
Dayyay Frankay	115VAC	Normal temperature,	PF≥0.99					
Power Factor	230VAC	full load		PF≥0.95				
Start-up Delay Time	115VAC/230VAC, normal ter	mperature, rated load			3	s		
Input Fuse*	Built-in fuse		-	25		Α		
la an della de considerare Dondo esta a	Under-voltage protection sto from high to low)	45	65	75	\/40			
Input Under-voltage Protection	Under-voltage protection release (Input voltage rises from low to high)		70	80	85	VAC		
Hot Plug	_	Unavailable						
Note: *The fuse is in the neutral of the	mains supply, the mains shall be d	isconnected to de-energize the	e phase condu	ctors.				

MORNSUN®

Item	Operating Conditions			Min.	Тур.	Max.	Unit	
Output Voltage Accuracy	Full load rar	Full load range			±1			
Line Regulation	Rated load				±0.5			
Load Regulation	0% - 100% lo	oad			±0.5		%	
Minimum Load				0				
	10)/		Vo1			150		
	12V		Vo2		_	150		
Dinula 9. Naisa*	0.4\/		Vo1			200	\/	
Ripple & Noise*	24V		Vo2			150	mV	
	48V		Vo1			300		
	46V		Vo2			150		
Temperature Coefficient					±0.03		%/℃	
Hold-up Time	115VAC/230	OVAC, rated lo	ad		14		ms	
Short Circuit Protection				Output voltage turn off, re-power on for recover				
Over-current Protection				105%lo-125%lo, constant current limit mode, output voltage turn off after 5S, re-power on for recover				
	12V <a 25vdc"="" href="#square="><25VDC (Output voltage turn of re-power on for recover)							
Over-voltage Protection	24V	24V			\$35VDC (Output voltage turn off, re-power on for recover)			
	48V	48V			VDC (Outpure-power on	-		
Over temperature Pretection	230VAC,	Over-temper	rature protection start			65	°C	
Over-temperature Protection	100% load Over-temperatur		rature protection release	50	-			

Enclosed Switching Power Supply Application Notes for specific information.

General S	pecification	S						
Item		Operating Conditions		Min.	Тур.	Max.	Unit	
	Input - 😩			2000	-			
Isolation Test	Input - output	Electric strength test for 1min., leak	rage current < 10mA	4000	-		VAC	
	Output - 😩							
	Input - 😩	Ambient temperature: 25 ± 5°C		100	-			
Insulation Resistance	Input - output	Relative humidity: < 95%RH, no cor	ndensation	100	-		M Ω	
Output - (Test voltage: 500VDC	100					
Input - output				2 x MOPP				
Isolation level Input - (‡) Output - (‡)				1 x MOPP				
				1 x MOPP				
Operating Temperature				-40	-	85	· °C	
Storage Tempe	erature		-40	_	85			
Operating Hun	nidity	Non-condensing	10		95	%RH		
Storage Humid	lity	Non-condensing		20		90	76KIT	
		PFC		-	65			
Switching Frequency		DC-DC	DC-DC				KHz	
		Auxiliary source	-	65	-			
Power Derating			-40°C to -25°C*	0	-		%/℃	
		Operating temperature derating	-25°C to +50°C	0	-	-		
			+50°C to +85°C	2.5	_			

MORNSUN®

		AC Input	85VAC-180VAC	0.211	-	-	9/ /\ /A C	
		(12V)	180VAC-277VAC	0			%/VAC	
		DC Input	120VDC-350VDC	0.261			0/ 0/10 0	
		(12V)	350VDC-390VDC	0			%/VDC	
	Input voltage derating		85VAC-100VAC	1				
	delaling	AC Input (24/48V) DC Input (24/48V)	100VAC-180VAC	0.31	-		%/VAC	
			180VAC-277VAC	0				
			120VDC-350VDC	0.304			%/VDC	
			350VDC-390VDC	0				
Logicago Current	Touch current		†		<0.	.1mA		
Leakage Current	240VAC, 60Hz	Earth leakage	arth leakage current		<0.5mA			
Safety Standards	12V/24V/48V			EN/BS EN62368-1 (Report) Design refer to IEC/UL62368-1, UL60601-1, GB4943.1			0601-1,	
Safety Class					CLASSI			
MTBF	MIL-HDBK-217F@	MIL-HDBK-217F@25℃			≥250,000 h			
Warranty	Ambient temperature: ≤85°C			5 years				
Note:*VIN≥180VAC.	·			·				

General Specifications					
Case Material Metal (SUS 304)					
Dimensions	290.00mm x 127.00mm x 40.50mm				
Weight	2100g (Typ.)				
Cooling Method	Forced cooling 17.15 CFM				

Electron	nagnetic Compatib	ility (EMC)			
	CE	CISPR32 EN55032	150kHz—30MHz	CLASS B	
Emissions	RE	CISPR32 EN55032	30MHz—1GHz	CLASS A	
	Harmonic current	IEC/EN61000-3-2		CLASS A and CLASS D	
	ESD	IEC/EN61000-4-2	Contact ±8KV/Air ±15KV		
	RS	IEC/EN61000-4-3	80MHz – 1GHz 10V/m		
	EFT	IEC/EN61000-4-4	±4KV, (5 or 100)kHz	Perf. Criteria A	
	Surge	IEC/EN61000-4-5	line - line ±2KV/line - PE ±4KV		
Immunity*	MS	IEC/EN61000-4-8	30A/m		
	CS	IEC/EN61000-4-6	0.15MHz - 80MHz 10Vr.m.s		
	Voltage dips	IEC/EN61000-4-11	70% U _n * , 25/30 periods (50/60Hz) 40% U _n * ,10/12 periods (50/60Hz) 0% U _n *, 1 periods	Perf. Criteria B	

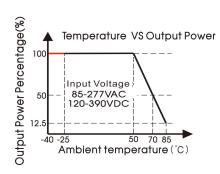
Note: 1. *U_n is the maximum input nominal voltage.

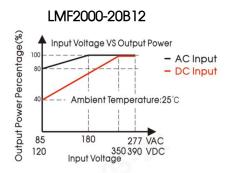
C: Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions.

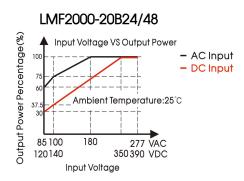
Functional Specifications							
Item	Operating Conditions		Min.	Тур.	Max.	Unit	
Dansata Cambral Cristah	All input voltage range, all	Power on	į į	P1300 Pin13 and Pin14 short			
Remote Control Switch	load range	Power off	F	P1300 Pin13 and Pin14 open			
DC OK Sieve el	All input voltage range, all	Power on		0	0.5	V	
DC-OK Signal	load range	Power off	10	_	12	V	
Current Sharing Accuracy	Output >50%lo1		_	±10		%	

MORNSUN[®]

^{2. *}perf. Criteria:

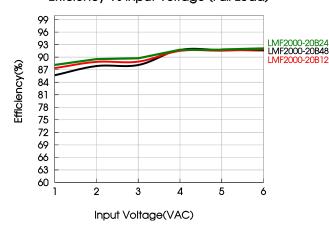

A: The equipment shall continue to operate as intended without operator intervention;

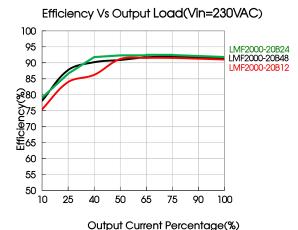

B: After the test, the equipment shall continue to operate as intended without operator intervention;



Remote Sense	The total compensate and Pin18 of the JP13 ends of the output loc respectively		200		mV	
Oring	·		Support dir	•	use, achievendancy	e 3+1 parallel
		Normal output	Green on			
LED Signal	Main output status indication	Abnormal output, protected	Red on			
	maicanon	Power off (AC without Input)	Light off			
SDA, SCL for I ² C*	Pin5 and Pin6 of the JP1300		Internal 2.4 k \Omega pull-up resistor to internal 3.3V			nternal 3.3V
Note:*SDA, SCL for I ² C, thi	s function is reserved. If you need	d this function, you can contact the sales en	gineer for custo	mized develo	pment.	

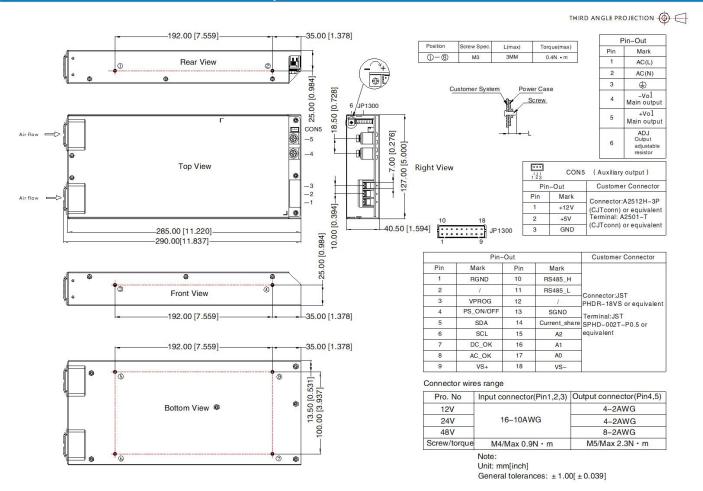
Product Characteristic Curve




* TVin ≥ 180VAC

Note: 1. With an AC input voltage between 85 - 180VAC and a DC input between 120 - 350VDC the output power must be derated as per the temperature derating curves;

2. This product is suitable for applications using natural air cooling; for applications in closed environment please consult Mornsun FAE.


Efficiency Vs Input Voltage (Full Load)

Dimensions and Recommended Layout

Note:

- 1. For additional information on Product Packaging please refer to www.mornsun-power.com. Packaging bag number: 58220666;
- 2. Unless otherwise specified, parameters in this datasheet were measured under the conditions of Ta=25°C, humidity <75%RH with nominal input voltage and rated output load;
- 3. The room temperature derating of 5° C/1000m is needed for operating altitude greater than 2000m;
- 4. All index testing methods in this datasheet are based on our company corporate standards;
- 5. In order to improve the efficiency at high input voltage, there will be audible noise generated, but it does not affect product performance and reliability;
- 6. We can provide product customization service, please contact our technicians directly for specific information;
- 7. Products are related to laws and regulations: see "Features" and "EMC";
- 8. The out case needs to be connected to PE () of system when the terminal equipment in operating;
- 9. The output voltage can be adjusted by the ADJ, clockwise to increase;
- Our products shall be classified according to ISO14001 and related environmental laws and regulations, and shall be handled by qualified units;
- 11. The power supply is considered a component which will be installed into a terminal equipment. All EMC tests should be confirmed with the final equipment. Please consult our FAE for EMC test operation instructions.

Mornsun Guangzhou Science & Technology Co., Ltd.

Address: No. 8 Nanyun 4th Road, Huangpu District, Guangzhou, China

Tel: 86-20-38601850 Fax: 86-20-38601272 E-mail: info@mornsun.cn www.mornsun-power.com

MORNSUN®

LMF2000-20Bxx Power Supply Application Note Content

1. Overview description	7
1.1 AC/DC input terminal block (J1)	8
1.2 Main DC output terminal (-Vo1, +Vo1)	8
1.3 Auxiliary DC output terminal CON5	9
1.4 Signal port (JP1300)	9
1.5 Green and red status display LED lights	10
1.6 Adjustable Resistors	10
2. Function Manual	12
2.1 Input requirements	12
2.2 Output requirements	12
2.3 Start-up timing	12
2.4 Fan speed control	13
2.5 Output over-voltage protection (OVP)	13
2.6 Output constant-current protection (OCP)	14
2.7 Output short circuit protection (SCP)	15
2.8 Over-temperature protection (OTP)	15
2.9 Output power derating	15
2.10 Remote control	15
2.11 DC_OK signal	16
2.12 Remote compensation	17
2.13 Parallel operation	17
2.13.1 Redundancy	17
2.13.2 Current sharing	18
2.14 I2C communication address	20
3. Installation requirements	21
3.1 Safety introduction	21
3.2 Safety requirements	21
3.3 Installation method	21
4.Communication protocol	23
4.1 Hardware parameter	23
4.2 Data frame format	23
4.3 Register data definition	24

1. Overview description

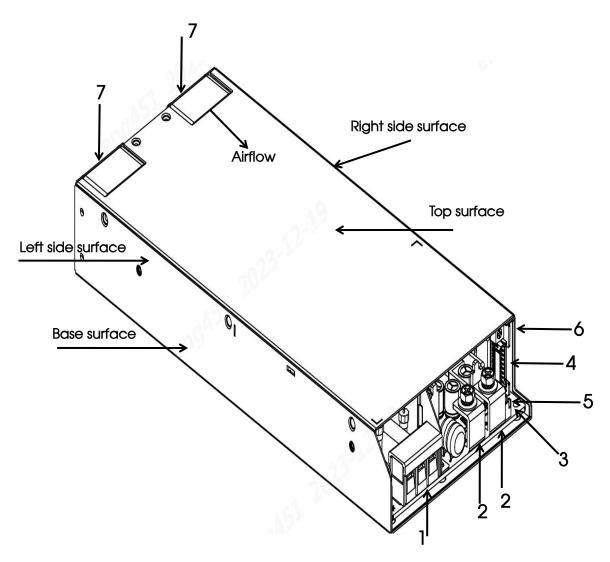
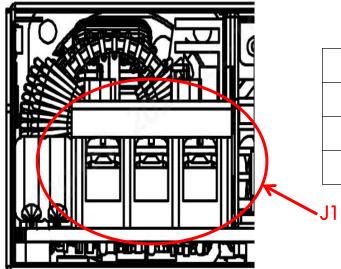


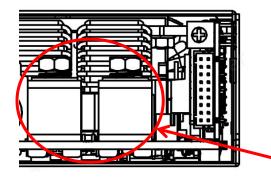
Fig. 1: Appearance information of LMF2000-20Bxx


Overview description:

- 1. AC/DC input terminal (J1)
- 2. DC main output terminal (-Vo1, +Vo1)
- 3. Auxiliary output terminal CON5
- 4. Signal connection press the terminal (JP1300)
- 5. Green and red status display LED lights
- 6. Output voltage regulation resistor
- 7. Fans

1.1 AC/DC input terminal block (J1)

The input terminal J1, as a standard 3-pin fence welding terminal with upper cover, the center spacing of the pins is 10mm.



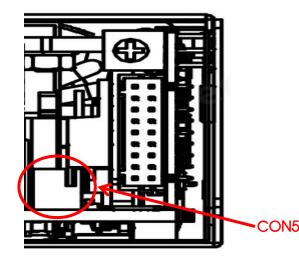
Pin	Features
L	Line (Phase)
N	Neutral
(a)	Ground/Earth

Wire size: 16-10AWG Torque: M4/0.9N·m (max)

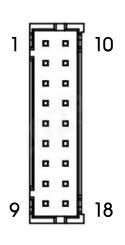
1.2 Main DC output terminal (-Vo1, +Vo1)

The output terminal uses two standard screw lock type metal terminals, the pin spacing between each is 18mm.

Pin	Features
-Vo1	Main output -
+Vo1	Main output +


· -Vo1 +Vo1

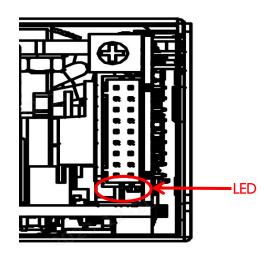
Torque: M5/2.3N·m (max)


1.3 Auxiliary DC output terminal CON5

The auxiliary output terminal with a standard terminal of 2.5mm pitch.

Pin	Label	Function
1	+12V	Vo2+ (12V+)
2	+5V	Vo3+ (5V+)
3	GND	Reference Ground

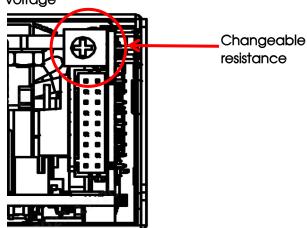
1.4 Signal port (JP1300)



Pin	Label	Features				
1	RGND	485 signal ground				
2	/	/				
3	VPROG	The software output is adjustable				
4	PS-ON/OFF	Remote control signal				
5	SDA	I2C communication line				
6	SCL	I2C communication line				
7	DC_OK	DC_OK Signal				
8	AC_OK	AC_OK Signal				
9	VS+	Remote compensation positive terminal				
10	RS485_H	R\$485_H				
11	R\$485_L	R\$485_L				
12	/	/				
13	SGND	Signal terminal reference ground				
14	Current share	Current sharing bus				
15	A2	ADDRESS code 2				
16	A1	ADDRESS code 1				
17	A0	ADDRESS code 0				
18	VS-	Remote compensation negative terminal				

Note: The reference ground of all pins on the signal terminal is Pin13.

1.5 Green and red status display LED lights



Two kinds of LED lights indicate difference working states of the power supply:

Green LED	Red LED	Status			
ON	OFF	Normal work			
OFF	ON	Main alarm			
OFF	OFF	No input			

1.6 Adjustable Resistors

Turn counterclockwise to increase output voltage

Model	Rated Output Voltage	Adjustable Range Of Output Voltage
LMF2000-20B12	12V	10.5-14V
LMF2000-20B24	24V	20-28V
LMF2000-20B48	48V	42V-56V

For wider output voltage regulation (beyond the range of adjustable resistor regulation) as shown in the following table, you can use the following methods:

Model	Rated Output Voltage	Adjustable Range Of Output Voltage
LMF2000-20B12	12V	7.2-14V
LMF2000-20B24	24V	9.6-28V
LMF2000-20B48	48V	19.2V-56V

Method: Signal voltage regulation

Connect PIN3 (VPROG) on the JP1300 terminal to 0V and adjust the adjustable resistance to the lowest output voltage. When PIN3 (VPROG) is externally connected to 5V and the adjustable resistance is adjusted to the maximum, it corresponds to the highest output voltage.

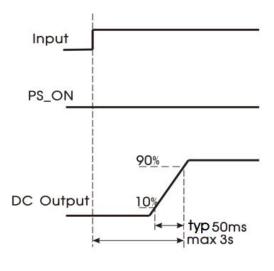
For example, the selection of LMF2000-20B48, rated output 48Vdc, need to adjust to 19.2Vdc, the operation is as follows; the signal voltage to 0Vdc, and at the same time adjust the adjustable resistor to the minimum voltage counterclockwise, then the output will become 19.2Vdc.

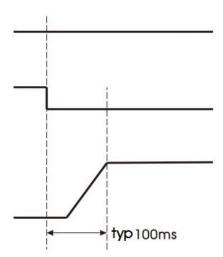
2. Function Manual

2.1 Input requirements

The AC input voltage and DC input voltage must be within the defined voltage range (refer to data-sheet), otherwise the power supply may not work properly or even malfunction. The internal L and N line of the power module have been connected in series with a 300V 25A fuse. For better protection, it is recommended that customers use a circuit breaker not greater than 25A (Non-mandatory requirement).

2.2 Output requirements

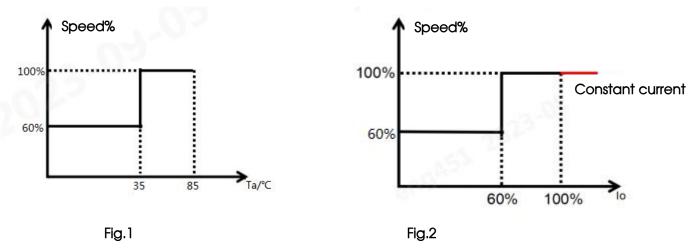

Main output


At any voltage value, the maximum output current and power must not exceed the rated/specified value. The output current must not exceed the maximum output current value.

Auxiliary output

The auxiliary1# circuit supports a maximum current of 12V/0.8A. The auxiliary2# circuit supports a maximum current of 5V/0.3A

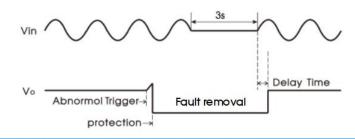
2.3 Start-up timing



Item	Operating Cond	Min.	Тур.	Max.	Unit		
Day say affilial differen	Room temperature,	115VAC	14				
Power-off Hold Time	full load	230VAC	14			ms	
Start Delay Time	230VAC, full load, 25°C		-	3	S		

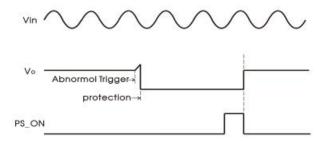
2.4 Fan speed control

Fan speed is determined by output power and output voltage at the same time, refer to the following curve for fan speed change.



lo: Rated output current. Ta: Near output ambient temperature.

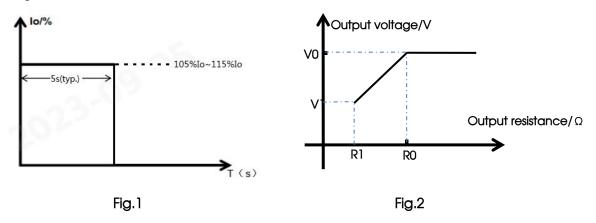
2.5 Output over-voltage protection (OVP)


Main output

The over-voltage protection function is to close the main output when the output voltage reaches the protection voltage value. When the main circuit over-voltage protection occurs, the main circuit output voltage of the module will be shut off, and the auxiliary circuit output will not be affected. The main circuit output can be restored after disconnecting the input power for at least 3 seconds.

In addition, it can be quickly restarted by the PS_ON signal:

Auxiliary output


When the auxiliary circuit voltage reaches 16VDC (maximum value), the auxiliary output will be in hiccup status, and the main output voltage will be in hiccup status until the auxiliary output returns to normal after the fault is eliminated.

2.6 Output constant-current protection (OCP)

Main circuit overcurrent

If in CC load mode, when the current exceeds the constant current point, the output enters CC mode 5s (typ.) then shut off; after mains restart, the output returns to normal.

If in CV/CR load mode, the relationship among output current, voltage and resistance in shown in the following curve:

When the product enters the constant current state, the output state circulates as shown in Fig.1, Enter the 5s constant current state, and then the output is locked. After restarting the power supply and the output overload state is lifted, the product returns to normal working state.

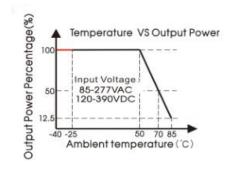
In Fig.2, the corresponding slope of segments R1-R0 is the corresponding output current I when the current is constant.

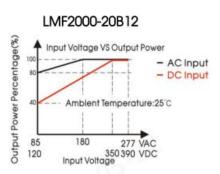
② Auxiliary circuit overcurrent

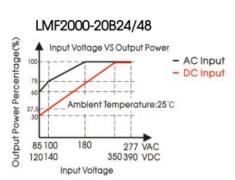
When the auxiliary output current exceeds 130% (typ.) of the rated current, turn off the main output. After the overflows state is removed, the main route automatically recovers output after restart.

2.7 Output short circuit protection (SCP)

When the main output is short-circuited, the power output is in constant current state. Fig.1 shows 2.6, after the short-circuit is removed, the mains restart, the output returns to normal.

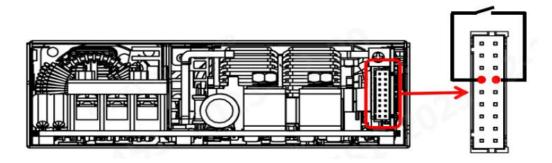

When the auxiliary circuit output is short-circuited, the main circuit without output.


2.8 Over-temperature protection (OTP)


When the ambient temperature of the power supply exceeds the rated temperature for a period of time, the power supply will be turned off and the power supply will resume normal operation after the ambient temperature drops to the set value.

2.9 Output power derating

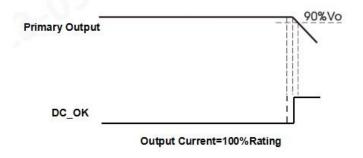
The temperature derating curve and voltage derating should be performed according to the following curves.

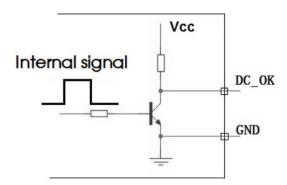


* Vin≥180VAC

2.10 Remote control

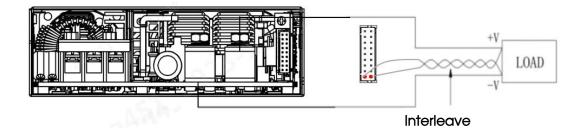
Switch between PS_ON/OFF (Pin4) and SGND (Pin13)	Output Status
Short-Circuit	Output on
Pin floating	Output off


If the input terminal of the power module has been connected to a power source, the PS_ON/OFF signal pin can be used to control the on and off of the main output, and the PS_ON/OFF signal does not affect the output voltage of the auxiliary circuit.


Note: The internal PS_ON/OFF input impedance of the module is 5.1K.

2.11 DC_OK signal

The DC_OK signal is used to monitor whether the power supply is working normally, and the signal is at Pin7 of the signal terminal JP1300.


Note: When the DC_OK signal is connected to the external circuit, the impedance of the external external circuit (between Pin7 and Pin13 of JP1300) is not less than $10k\Omega$.

DC_OK (Pin7) and SGND (Pin13)	Output State
0 - 0.5V	Output on
10 - 12V	Output off

2.12 Remote compensation

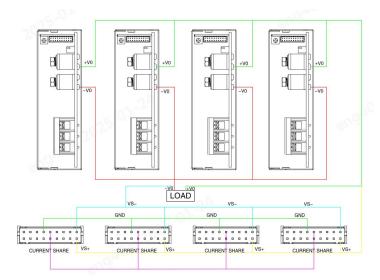
Note:

- 1. Vs+ and Vs- cannot be shorted or reversed, otherwise the power module will be damaged.
- 2. Before powering on the product, please confirm whether the control signal connection terminal (JP1300) Pin4 (PS_ON/OFF) and Pin13 (SGND) short-circuit jumper cap are connected. If not, the product without output. When the control signal connection terminal (JP1300) of the product are external connected as a whole, please ensure that Pin4 and Pin13 are short-circuit connected. Please refer to LMF2000-20Bxx Series Power Supply Application Notes: 2.10 Remote control.
- 3. Pin 9 and pin 18 of the signal terminal JP1300 can compensate the voltage drop on the output cable.
- 4. The remote compensation circuit can compensate 200mV cable voltage drop. This voltage includes the sum of the cable drop connected to the output positive terminal and the output negative terminal.
- 5. If remote compensation is to be used, this pin needs to be connected to the load using twisted pair cables.

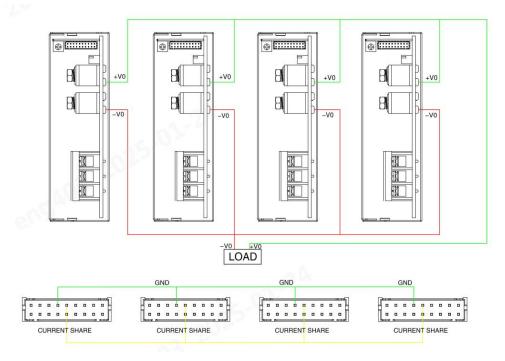
2.13 Parallel operation

2.13.1 Redundancy

The power module output can be connected in parallel to achieve redundancy, thereby improving system reliability. The maximum power of the redundant system needs to be derated to ensure that the redundant system can still meet the rated load requirements when a power supply module fails. The current common practice is to construct a redundant system by the N+1 method, that is, N+1 power supplies are connected in parallel, to support the maximum load current N*Iomax, where Iomax is the rated output current of each power supply. For example, the rated output current of each power supply is 40A, and 3+1 units are connected in parallel to construct a 3*40A=120A redundant system.


The power module supports 3+1 parallel redundant operation.

2.13.2 Current sharing


Method 1: Current sharing bus and remote compensation lines are both connected.

For load line loss \leq 200mV, and the output voltage difference of each single module \leq 50mV, this type of connection is recommended to obtain a better line-end output voltage and current sharing effect.

Method 2: Only the current sharing bus is connected, and the remote compensation is not connected.

For the load line loss \geq 200mV, or the output voltage difference of each single module cannot or does not need to be accurately adjusted to \leq 50mV, this type of connection is recommended to obtain a better current sharing effect of the parallel machine. In the same way, when the load loss is unknown or the current sharing fails to meet the specifications under the first connection method, it is recommended to replace it with this connected method. The wiring method of the current sharing function is shown in the figure below:

Note: 1. When using in parallel, the number of parallel modules cannot exceed 4.

2. Before powering on the product, please confirm whether the control signal connection terminal (JP1300) Pin4 (PS_ON/OFF) and Pin13 (SGND) short-circuit jumper cap are connected. If not, the product without output. When the control signal connection terminal (JP1300) of the product are external connected as a whole, please ensure that Pin4 and Pin13 are short-circuit connected. Please refer to LMF2000-20Bxx Series Power Supply Application Notes: 2.10 Remote control.

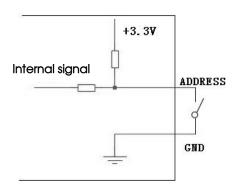
When power modules work in parallel, there is an internal active current sharing circuit to ensure that the current between each module is balanced.

The active current sharing circuit adopts the automatic master-slave current sharing method. Each power module has a current sharing bus signal (CURRENT SHARE BUS). When working in parallel, the current sharing bus of all power modules must be connected together. The current-sharing bus signal is located at pin 14 of JP1300.

The output voltage of each power module will affect the current sharing accuracy. The output voltage of the power module is the rated voltage ±50mV. In practical applications, if the output voltage value needs to be adjusted, the output voltage of all parallel power supply modules needs to be adjusted to the same voltage. The recommended voltage range: target voltage value ±50mV

After the output load of each power module is greater than 50% of the rated load, the current sharing accuracy should be $\pm 10\%$. The current sharing calculation formula is:

Current sharing accuracy =
$$\frac{Io \max - Io \min}{Io \max} *100\%$$


lomax: the maximum output current value in parallel power supply modules. lomin: the minimum output current value in parallel power supply modules.

2.14 I2C communication address

In the parallel system, if you need to identify the power module information, you need to set the I2C communication address for each parallel power module, and exchange data with the host computer through I2C. The setting of the communication address is determined by pins 15, 16 and 17 of the signal terminal JP1300. When these three pins are short-circuited with pin 13 of JP1300, it will be low level (L, voltage range: 0 - 1.31V). When disconnected, it is high level (H, voltage range: 1.99V - 3.3V). The specific address number is shown in the table below:

ADDRESS 2	ADDRESS 1	ADDRESS 0	Address number
L	L	L	0
L	L	Н	1
L	Н	L	2
L	Н	Н	3
Н	L	L	4
Н	L	Н	5
Н	Н	L	6
Н	Н	Н	7

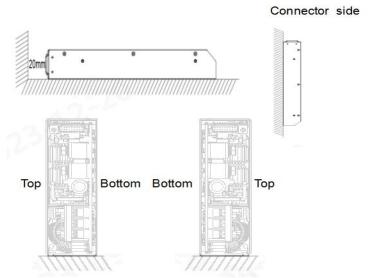
The internal pull-up resistance value of the power module is $10k\,\Omega$, and the external impedance can be matched according to the actual application to meet the high and low voltage range.

3. Installation requirements

3.1 Safety introduction

Warning: Risk of electric shock

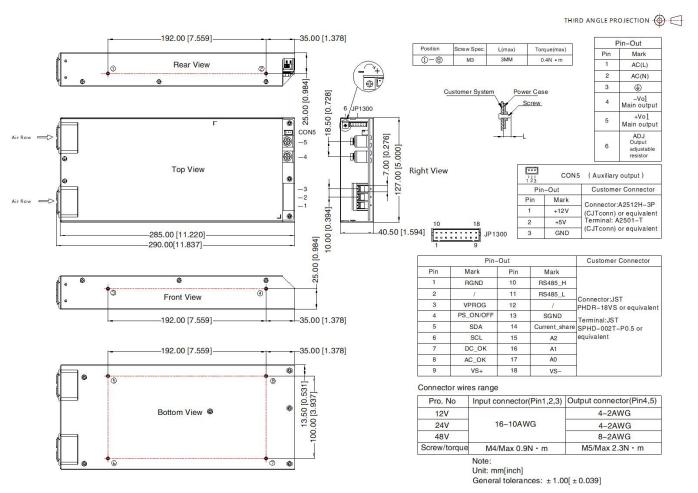
During high voltage operating


- The power supply module is disconnected from the input DC or the AC power and placed for at least one minute before starting to operate it.
- When installing the input wire to the power module, please connect the ground terminal first, and then connect the L line and the N line.
- When removing the input wire, please remove the L wire and the N wire first, and then remove the ground wire.
- When disassembling, make sure that no objects fall into the power module.
- Pay attention to high temperature.
- After the power module is working in a high temperature environment, wait for its shell to cool down before operating.
- This product needs to be installed by professionals and needs to be used with other equipment.

3.2 Safety requirements

When installing, pay attention to the primary side and the protective ground, the creep distance and the electrical clearance of the primary side and the secondary side refer to EN60601-1.

3.3 Installation method


Standard mounting orientation:

MORNSUN®

Position of mounting holes:

Note: The fan panel cannot be blocked by other objects, and a distance of at least 20mm must be maintained, otherwise it will affect the heat dissipation and performance of the power module.

4. Communication protocol

The LMF2000-20Bxx series power modules support standard 485 communication protocols and monitor the power modules through I2C bus.

4.1 Hardware parameter

The baud rate is 38400Baud/S. Byte format:1start bit, 8data bit,1 stop bit, no parity bit.

4.2 Data frame format

The format of the data communication frame is based on the Modbus-RTU mode standard, and only block read commands are supported. The format of the data frame sent and received is as follows:

Upper	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
computer TX	Addr	Fun_Code	RegAdd_H	RegAdd_L	Num_H	Num_L	CRC_L	CRC_H

Slave	Byte0	Byte1	Byte2	Byte3	Byte4	 ByteN	ByteN+1
computer RX	Addr	Fun_Code	ByteNum	Uint16_H	Uint16_L	 CRC_L	CRC_H

The IP address of the lower computer is 0x00 - 0x07, where 0x00 is the broadcast address, and only the block read command 0x03 is supported. In double-byte data, the high byte is in front of the low byte and the low byte is in front of the CRC check code.

4.3 Register data definition

Category	Register aaddress	Data name	Data type	Read and write permission	Bytes of variable	Data specification
	0x0000	Bar code	String	R	32	
	0x0010	Model number	String	R	32	LMF2000-20Bxx
Factory	0x0020	Software version	String	R	32	V1.0
information	0x0030	Software date	String	R	32	Software date
	0x0040	yieldly	String	R	32	MORNSUN
	0x0050	series	String	R	32	LMF enclosed power supply
	0x0060	Output voltage	Uint16	R	2	0.01V/LSB
	0x0061	Output current	Uint16	R	2	0.01A/LSB
Analog	0x0062	Output power	Uint16	R	2	0.1W/LSB
quantity	0x0063	(reserve)	Uint16	R	2	
	0x0064	(reserve)	Uint16	R	2	
	0x0065	temperat ure	Uint16	R	2	0.01°C/LSB offset -40°C
	0x0066	System fault code	Uint16	R	2	Definitions are given in the table below
	0x0067	System status code	Uint16	R	2	Definitions are given in the table below

Fault code definition					
BitO	Fan 1 is faulty	Bit8	The secondary overload of the main route is faulty		
Bi†1	Fan 2 is faulty	Bit9	The third overload of the main route is faulty		
Bit2	(reserve)	Bit10	The rear stage over-temperature is faulty. Procedure		
Bit3	The main route over-voltage is faulty	Bit11	The main route short-circuit is faulty		
Bit4	(reserve)	Bit12	The main hardware over-voltage		

Bit5	The main route over-current is faulty	Bit13	The front hardware is overheated. Procedure
Bit6	(reserve)	Bit14	Constant current fault
Bit7	The primary overload of the main route is faulty	Bit15	(reserve)

Status code definition					
BitO	External power-on flag bit	Bit8	Fault flag bit		
Bit1	Enter the AC power-on flag	Bit9	(reserve)		
Bit2	PFC output flag bit	Bit10	(reserve)		
Bit3	BUS voltage OK flag bit	Bit11	(reserve)		
Bit4	DC output flag bit	Bit12	AC voltage detection flag bit		
Bit5	DC output ready flag bit	Bit13	Fan running flag bit		
Bit6	(reserve)	Bit14	Relay flag bit		
Bit7	Peak power flag bit	Bit15	System initialization flag bit		

For more details, please consult the MORNSUN FAE.