MORNSUN®

FEATURES

- Ultra-wide 85 305VAC and 120 430VDC input voltage range
- Typical efficiency up to 92%, power factor up to 0.99
- International standard half brick package
- Compact size, high power density
- Over temperature protection, input reverse polarity protection, output over-voltage/over-current/ short circuit protection
- Designed to meet UL/IEC62368 standards

LBH150-13Bxx series is a new generation product of Mornsun's ultra compact size and highly efficient green power converter. It is a standard half brick package size with ultra-wide input voltage, high efficiency, high reliability and reinforced isolation. The products are safe and reliable with good EMC performance, the safety specifications meet the international UL/IEC/EN62368 standards. They are widely used in switching equipment, access equipment, mobile communications, microwave communications, optical transmission, routers and other areas of the communication, as well as electronics and mechanical equipment etc. For harsh EMC environment, the application circuit in the datasheet is strongly recommended.

Certification	Part No.	Output Power (W)	Nominal Output Voltage and Current(Vo/Io)	Efficiency at 230VAC (%) Typ.	Capacitive Load (uF) Max.
LBH150-13B12		12V/12.5A	92	4000	
	LBH150-13B24	150	24V/6.25A	92	1500
EN	LBH150-13B28		28V/5.36A	92	1500
	LBH150-13B48		48V/3.13A	92	470
-	LBH150-13B54		54V/2.78A	92	470

Note: The product picture is for reference only. For details, please refer to the actual product.

Item	Operating Conditions	Min.	Тур.	Max.	Unit	
	AC input	85		305	VAC	
Input Voltage Range	DC input	120		430	VDC	
Input Frequency		47		63	Hz	
	115VAC			2		
Input Current	230VAC			1	А	
Inrush Current	230VAC, Ta=25 ℃			30	-	
Power Factor*	50/60Hz, 115VAC/230VAC, Pout=150W	0.96	0.99			
THD*	Ta=25℃, Vin=115/230V, Pout=150W		5		%	
	Under-voltage protection start (Input voltage drops from high to low)	70		80		
Input Under-voltage Protection	Under-voltage protection release (Input voltage rises from low to high)	75		85	VAC	
Recommended External Input Fuse		3.15	A/300V, slow	/-blow, requ	ired	
Hot Plug	Unavailable			ilable		
Grounded Mode	PE is required for aluminum substrate application					

Output Specifications Operating Conditions Unit Item Min. Typ. Max. **Output Voltage Accuracy** Full load range +2 ------±0.5 Line Regulation Rated load ___ ___ % Load Regulation 0% - 100% load ±0.1 ------Minimum Load 0 ___ ___

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

2024.12.06-A/5 Page 1 of 18

MORNSUN®

		12V		100	150	
	20MHz bandwidth (peak-to-peak value)	24V		200	250	mV
Ripple & Noise*		28V		200	300	
	Load at room temperature >20%	48V		300	400	
		54V		300	400	
Temperature Coefficient				±0.02		%/ ℃
Stand-by Power Consumption				2	4	W
Hold-up Time				8		ms
Short Circuit Protection			Hiccup, continuous, self-recover			
Over-current Protection			120% lo, self-recover after fault disappear			
	12VDC output		\leq 16VDC (Hiccup)			
	24VDC output		≪32VDC (Hiccup)			
Over-voltage Protection	28VDC output		≤35VDC (Hiccup)			
-	48VDC output		≤60VDC (Hiccup)			
	54VDC output		≤63VDC (Hiccup)			
No-load Output Of Auxiliary Source	Maximum pulling current ab for reference ground (Intern	8	12	15	V	
Over Temperature Protection	Over-temperature protection start (Aluminum substrate temperature) until power off		105		115	Ĉ
	Over-temperature protection recovery		Reset input			
			ENA connect to HU- , output is normal			
ENA Remote Control ON/OFF	Enable control pin		ENA disconnect to HU- , output turn off			

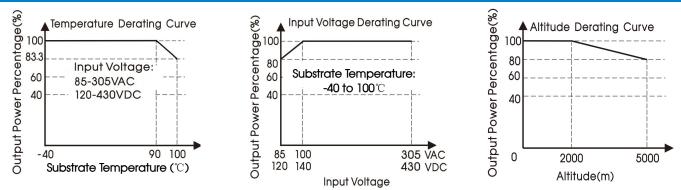
Note: *The "parallel cable" method is used for ripple and noise test, please refer to AC-DC Converter Application Notes for specific information.

General S	pecifications						
Item		Operating Conditions	Min.	Тур.	Max.	Unit	
Input - Outpu			3000				
Isolation	Input - PE	Electric Strength Test for 1min.,	1500			VAC	
	Output - PE	leakage current <10mA	1500				
	Input - Output		100				
Insulation	Input - PE	Test Voltage: 500VDC, Ta=25°C	100			MΩ	
Resistance Output - PE			100				
Operating Temperature		Al-Substrate temperature	-40		+100	°C	
Storage Temperature			-40		+100	C	
Storage Humidity		Non-condensing			95	%RH	
Coldorin er Torror		Wave-soldering	$260 \pm 5^{\circ}$ C; time: 5 - 10s				
Soldering Temp	berdiure	Manual-welding	360 ± 10℃; time: 3 - 5s				
"	+90°C to +100°C (Al-Substrate temperature)		1.67			%/ ℃	
Power Derating		85VAC - 100VAC	1.33			%/VAC	
Safety Standard			BS EN/EN62368-1 safety approved; Design refer to UL/IEC62368-1				
Safety Class			CLASS I				
		MIL-HDBK-217F@25°C	≥300,000 h				
MTBF		Telcordia SR-332@25℃	≥1500,000 h				

Environmental Characteristics				
Item	Operating Conditions	Standard		
Low Temperature Working	-40 °C	GB2423.1, IEC60068-2-1		
High Temperature Working	+85℃	GB2423.2, IEC60068-2-2		
Low Temperature Storage	-40 ℃	GB2423.1, IEC60068-2-1		

MORNSUN[®]

High Temperature Storage	+85℃	GB2423.2, IEC60068-2-2
Sinusoidal Vibration	Direction of Z axis: 120-2000Hz, 3.04mm, 10g; two direction of X, Y, axis: 20-2000Hz, 3.04mm, 20g	GB2423.10, IEC60068-2-6
Temperature Shock	-40℃ to +100℃	GB2423.22, IEC60068-2-14
Temperature Cycle	-40 ℃ to +50℃	GB2423.22, IEC60068-2-14
Hot and Humid	+85℃, 85%RH	GB2423.50, IEC60068-2-67


Mechanical Specifications

Case Material		Black plastic, flame-retardant and heat-resistant (UL94V-0)			
Dimension	Horizontal package	63.14 x 60.60 x 12.70mm			
Weight	Horizontal package	140g (Typ.)			
Cooling Method		Using from the Al-Substrate to additional heat radiation of the radiator cooling			

Electromag	Inetic Compatibility (EN	<u>AC) (Based on recc</u>	mmended circuit)*	
	CE	CISPR32/EN55032 CLASS	A	
	CE	CE102 GJB151B (See F	g. 2 for recommended circuit)	
Emissions	RE	CISPR32/EN55032 CLASS	A	
	Harmonic current	IEC/EN61000-3-2 CLASS	IEC/EN61000-3-2 CLASS A	
	ESD	IEC/EN61000-4-2 Contact ±6KV/Air ±8KV		perf. Criteria B
	RS	IEC/EN61000-4-3 10V/m		perf. Criteria A
	EFT	IEC/EN61000-4-4 ±2KV		perf. Criteria B
	Surge	IEC/EN61000-4-5 line to line ±2KV/line to PE ±4KV		perf. Criteria B
mmunity	CS	IEC/EN61000-4-6 10Vr.m	s	perf. Criteria A
	Voltage variation**	IEC61000-6-2/IEC 61000-4-11 70% Un, 25/30 cycle(50/60Hz 40% Un, 10/12 cycle(50/60Hz 0% Un, 10/12 cycle(50/60Hz		perf. Criteria B
	Voltage interruption**	IEC61000-6-2/IEC61000-4-	1 0% Un, 250/300 cycle(50/60Hz)	perf. Criteria C

Note: 1. *Except for CE102 of the CE, other EMC test results are based on recommended circuit 1. 2. **Un is the maximum input nominal voltage.

Product Characteristic Curve

Note:

① With an AC input voltage between 85 - 100VAC/120 - 140VDC the output power must be derated as per the temperature derating curves; ② This product is suitable for applications using natural air cooling; for applications in closed environment please consult Mornsun FAE.

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

MORNSUN®

Additional Circuits Design Reference

1. Typical application

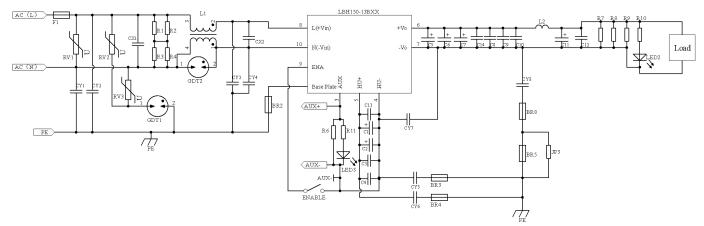


Fig. 1: Recommended circuit 1

	Required	Component	
Com	ponent	Recommended value	
	F1	3.15A/300VAC, slow-blow	
	LI	10mH/145m Ω , Max/3A (recommend MORNSUN P/N: FL2D-30-103)	
C	I/C2	82uF/450V (C1+C2≤200uF)*	
CX	I/CX2	105K/310VAC	
	12V	106K/1206/25V (Optional)	
C14	24V/28V	105K/1206/50V (Optional)	
	48V/54V	104K/1206/100V (Optional)	
	R6	10K Ω / 1206	
LED2	2/LED3	GreenYellow/5V/30mA/Φ3.1mm (Optional)	
	12V	5.6K Ω / 1206 (Optional)	
R10	24V/28V	10K \Q /1206 (Optional)	
	48V/54V	27K Ω /1206 (Optional)	
F	211	5.6K Ω /1206 (Optional)	
	12V	1000uF/16V (solid-state capacitor)	
C5/C6/C7/C11	24V/28V	470uF/35V	
	48V/54V	220uF/63V	
	12V	106K/1206/25V	
C8/C9/C10/C12	24V/28V	105K/1206/50V	
	48V/54V	104K/1206/100V	
10	12V	0.39uH/1.15mΩ/24A (Recommended RKR0415A-R39M of CODACA)	
12	24V/28V/48V/54V	0.8uH/4m Ω Max/15A (Recommended HCRC0415T-R80M of HUASUN))	
	12V	1KΩ/1206	
	24V	3.83K Ω / 1206	
R7	28V	6.8K Ω /1206	
	48V	20K Ω / 1206	
	54V	33K Ω / 1206	
	12V	1K ^Ω /1206	
R8	24V	3.83K ^Ω /1206	
	28V/48V/54V	NC	

MORNSUN®

	12V	1K \alpha /1206		
R9	24V	3.83K Ω /1206		
	28V/48V/54V	NC		

Note: ① *C1+C2 total value exceeds specifications, these is a risk of damage to the product; ② R7/R8/R9 can be replaced by a single 2W plug-in wind-wound resistor with the same resistance as R7/R8/R9 after parallel equivalence.

EMC C	EMC Component				
Component	Recommended value				
RV2/RV3	S14K300/4500A				
RV1	S14K350/4500A				
GDT1	3.6KV/3KA				
GDT2	300V/1KA				
R1/R2/R3/R4	2M Ω /1206				
CY3/CY4/CY5/CY6/CY7	Y1/102M/400VAC				
CY8	Y1/222M/400VAC				
BR2/BR3/BR4/BR5	4*3.1*2.6/47 \overline{a} /100MHz/DCR 0.004 \overline{a} Max (Multilayer Chip Bead, recommended HCB403026-470Y of HUASUN)				
C3/C4	683K/1210				
C13	683K/1210 (Optional)				
BR8	NC				
JP3	NC				
CY1/CY2	NC				

2. Conducted emission (CE102) recommended circuit

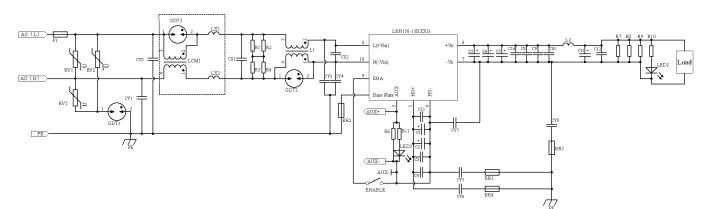
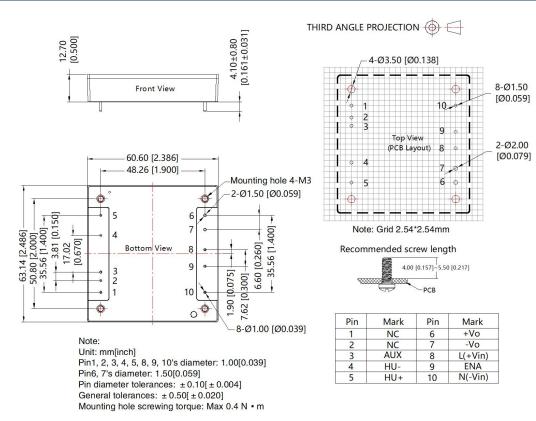


Fig. 2: Recommended circuit 2


Component	Recommended value		
GDT3	300V/1KA		
LX1/LX2	2mH/Min: 2A (recommend MORNSUN P/N: FD2D-20-202)		
LCM1 5.6mH/Min: 2A (recommend MORNSUN P/N: FL2D-20-56/			
CY1/CY2 Y1/102M/400VAC			
Note: The external size of economic parameters are the same as these of the allow recommended size of 1			

Note: The external circuit component parameters are the same as those of the above recommended circuit 1.

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

Dimensions and Recommended Layout

		Pin desc	cription		
1	NC	Open	6	+Vo	Positive DC output
2	NC	Open	7	-Vo	Negative DC output
3	AUX	Output of auxiliary source, reference HU-	8	L(+Vin)	AC input Line/Positive DC input
4	HU-	Keep the capacitor voltage negative	9	ENA	Switch enable pin
5	HU+	Keep the capacitor voltage positive	10	N(-Vin)	AC input Neutral/Negative DC input

Note:

- 1. For additional information on Product Packaging please refer to www.mornsun-power.com. Packaging bag number: 58200069;
- 2. If the product is not operated within the required load range, the product performance cannot be guaranteed to comply with all parameters in the datasheet;
- 3. Unless otherwise specified, parameters in this datasheet were measured under the conditions of Ta=25°C, humidity<75% with nominal input voltage and rated output load;
- 4. All index testing methods in this datasheet are based on our company corporate standards;
- 5. We can provide product customization service, please contact our technicians directly for specific information;
- 6. Products are related to laws and regulations: see "Features" and "EMC";
- 7. Our products shall be classified according to ISO14001 and related environmental laws and regulations, and shall be handled by qualified units.
- 8. All EMC tests require the test module to be mounted on a metal plate with a thickness of 3mm x 450mm x 450mm.

Mornsun Guangzhou Science & Technology Co., Ltd.

Address: No. 8 Nanyun 4th Road,	Huangpu District, Guangzhou, China	
Tel: 86-20-38601850	Fax: 86-20-38601272	E-mail: info@mornsun.cn

www.mornsun-power.com

MORNSUN Guangzhou Science & Technology Co., Ltd.

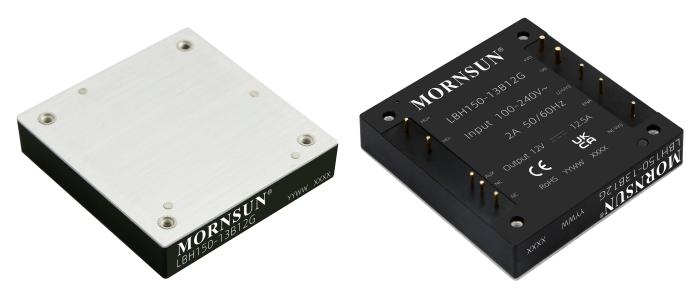
2024.12.06-A/5 Page 6 of 18

MORNSUN®

LBH150-13Bxx Series Power Supply Application Manual

Content

1. Appearance Pin Definition	
1.1. Appearance pin definition	8
2. Instructions For Use	
2.1. Input requirements	8
2.2. Output requirements	8
2.3. ENA Remote control switch	9
2.4. Auxiliary power supply for external signals (AUX terminal)	9
2.5. Input under-voltage protection (UVP)	9
2.6. Output over-voltage protection (OVP)	9
2.7. Over-current/short circuit protection	9
2.8. Over-temperature protection	
2.9. Output power derating	10
2.10. Peripheral layout recommendation	
3. Test Waveform	
3.1. Switch ON/OFF	13
3.2. Dynamic response	14
3.3. Output ripple & noise	14
3.4. Conducted & radiated emission (EMI)	15
4. Appearance Specifications	
4.1. Manufacturing data/dimensions	17
4.2. Installation and disassembly methods	17
4.3. Cooling method	


MORNSUN Guangzhou Science & Technology Co., Ltd.

2024.12.06-A/5 Page 7 of 18

1. Appearance Pin Definition

1.1. Appearance pin definition

Figure 1: Appearance pins

1	NC	Open	6	+Vo	Positive DC output
2	NC	Open	7	-Vo	Negative DC output
3	AUX	Output of auxiliary source, reference HU-	8	L(+Vin)	AC input Line/Positive DC input
4	HU-	Keep the capacitor voltage negative	9	ENA	Switch enable pin
5	HU+	Keep the capacitor voltage positive	10	N(-Vin)	AC input Neutral/Negative DC input

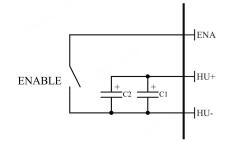
2. Instructions For Use

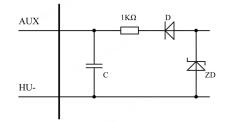
2.1. Input requirements

The AC input voltage and DC input voltage must be within the defined voltage range (refer to datasheet), otherwise the power supply may not work properly or even malfunction. The power module does not have a built-in fuse. For better protection, it is recommended that customers use a circuit breaker not greater than 3.15A.

To ensure the reliability of the product, hot plugging is prohibited.

2.2. Output requirements


At any output voltage value, if the long-term normal operation, the maximum output current and power must not exceed the rated value, and ensure that the aluminum substrate temperature does not exceed the temperature derating curve requirements.


2.3. ENA Remote control switch

The module has built-in ENA remote control switch function. This function can control ON/OFF of the output voltage when the input voltage is turned on. Short circuit ENA and HU-, and the output voltage is normal; ENA disconnect to HU-, and the output voltage turn off. The wiring diagram circuit is as follows:

2.4. Auxiliary power supply for external signals (AUX terminal)

The module additionally provides 12V auxiliary source output, the reference ground is HU- and provides an auxiliary control power supply for the primary side control circuit. No load voltage 8-15V (Internal resistor in series 1 k Ω , maximum pulling current about 10mA).

2.5. Input under-voltage protection (UVP)

When the input voltage is lower than the under-voltage protection set value, the module output is closed; When the input voltage is higher than the under-voltage protection power-on setting value, the module output is normal. The under-voltage protection has a return difference, that is, the shutdown setting value is lower than the start-up setting value, so as to prevent the module from being affected by external interference or the transient drop of input voltage when it is started.

2.6. Output over-voltage protection (OVP)

This module has output hiccup type output over-voltage protection function. When the output end of the module is over-voltage, the output voltage hiccup. After the fault is rectified, the module output automatically recovers to normal.

2.7. Over-current/short circuit protection

This module is designed with over-current/short circuit protection circuit, which can withstand over-current or short circuit at the output end. In short circuit state, the module is in hiccup state (working 58ms, rest 2.1s), as shown in Figure 2; After the over-current and short circuit faults are eliminated, the module output automatically recovers to normal.

MORNSUN[®]

MORNSUN Guangzhou Science & Technology Co., Ltd.

2024.12.06-A/5 Page 9 of 18

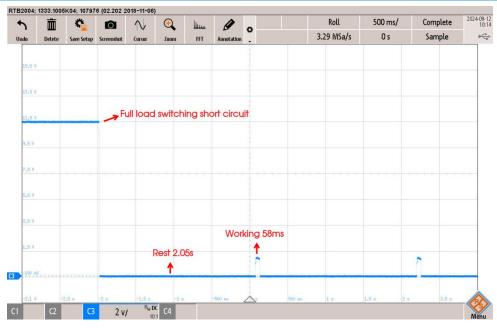
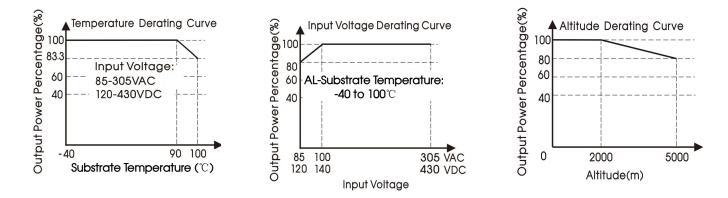


Figure 2: Output voltage waveform of full-load switching short-circuit

2.8. Over-temperature protection


The module has built-in over-temperature protection circuit to prevent the module from being damaged due to excessive temperature rise such as overload and short circuit. When the temperature of the aluminum substrate exceeds the over-temperature protection setting value, the output of the module automatically shuts down. It needs to be powered off and reset to restore normal. Over-temperature protection circuit adopts thermistor sampling, instant overheating may not protect in time, resulting in product damage. Ensure good heat dissipation when using the product.

2.9. Output power derating

When the input voltage is greater than 100VAC(140VDC), only need to derate according to the temperature derating curve.

When the input voltage is lower than 100VAC(140VDC), the output power will be derated according to the following input voltage derating curve after temperature derating;

The temperature derating curve is a typical test value, the working condition is heat sink with air cooling. For applications in closed environment please consult Mornsun FAE.

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

2024.12.06-A/5 Page 10 of 18

Figure 3: AL-Substrate temperature test point Note: The test point of Al-Substrate temperature is the temperature of the center point of the substrate.

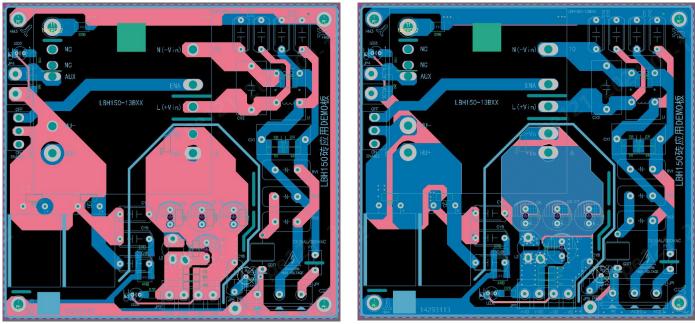

2.10. Peripheral layout recommendation

Figure 4: DEMO board physical drawing of recommended circuit 1

MORNSUN®

MORNSUN[®]

TOP layer TOP layer Figure 5: PCB routing diagram of recommended circuit 1

Figure 6: DEMO board physical drawing of recommended circuit 2

MORNSUN®

MORNSUN®

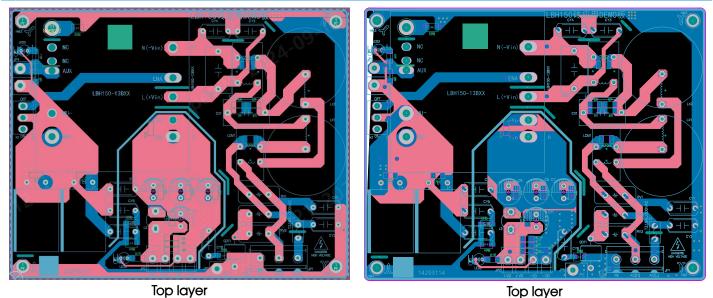
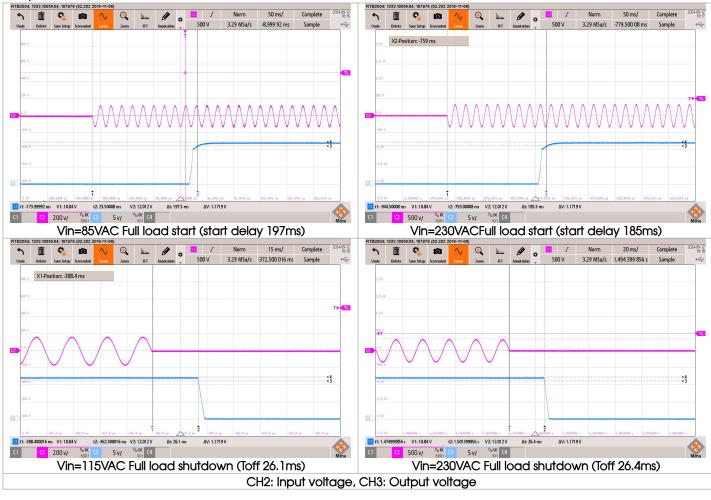



Figure 7: PCB routing diagram of recommended circuit 2

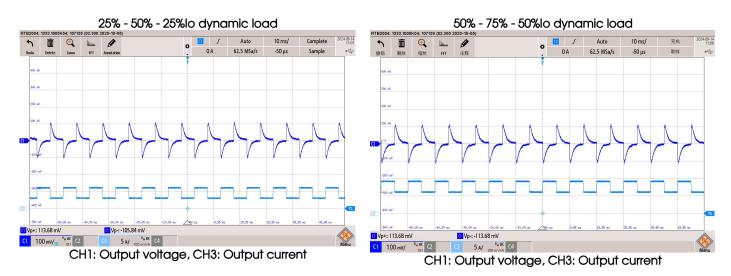
3. Test Waveform

3.1. Switch ON/OFF

Test conditions: Tc=25 $^\circ\!\mathrm{C}$, LBH150-13B12 product is tested based on recommended circuit 1, C1/C2=82uF.

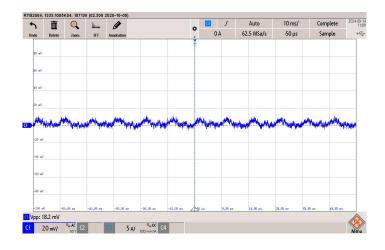
MORNSUN[®]

MORNSUN Guangzhou Science & Technology Co., Ltd.



Note: The power OFF hold-up time is related to the C1, C2 capacitance, and can be adjusted with reference to the following formula:

$$t = \frac{0.5 \cdot C_{C1+C2} \cdot (U1^2 - U2^2)}{P_o}$$

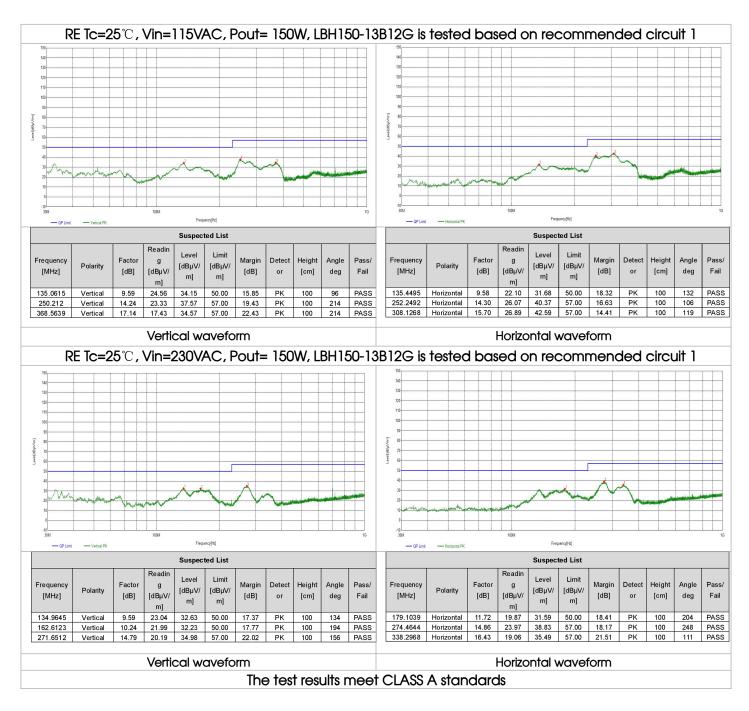

3.2. Dynamic response

Test conditions: Tc=25 $^{\circ}$ C, Vin= 230VAC, Vout=12V, 20MHz bandwidth. Products are tested based on recommended circuit 1 and the "parallel cable" method is used for test, output parallel 10uF electrolytic capacitor and 1uF ceramic capacitor.

3.3. Output ripple & noise

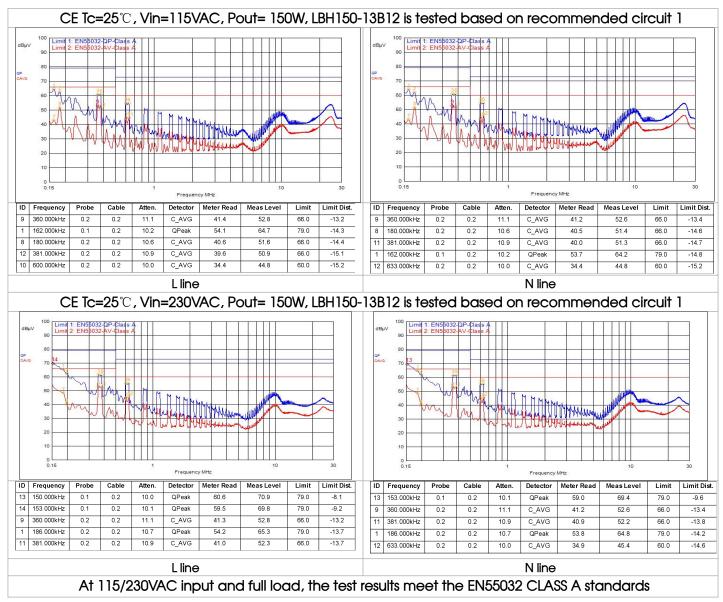
Test conditions: Tc=25 $^{\circ}$ C, Vin= 230VAC, Vout=12V, 20MHz bandwidth. Products are tested based on recommended circuit 1 and the "parallel cable" method is used for test, output parallel 10uF electrolytic capacitor and 1uF ceramic capacitor.

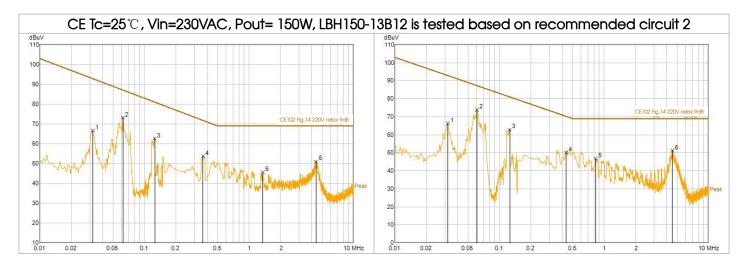
Waveform of full load output ripple CH1: Output voltage



3.4. Conducted & radiated emission (EMI)

(1) Radiated emission (RE):


Safety specifications: CISPR32/EN55032 CLASS A


MORNSUN[®]

MORNSUN Guangzhou Science & Technology Co., Ltd.

(2) Conducted emission (CE): Safety specifications: CISPR32/EN55032 CLASS A

Safety specifications: CE102 GJB151B

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

2024.12.06-A/5 Page 16 of 18

SN	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Note		SN	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Note
1	0.032	46.2	20.59	66.79	92.89	26.1	Peak value		1	0.032	45.7	20.59	66.29	92.89	26.6	Peak value
2	0.062	53.12	20.07	73.19	87.14	13.95	Peak value		2	0.0608	53.88	20.1	73.98	87.31	13.33	Peak value
3	0.1252	42.69	19.91	62.6	81.03	18.43	Peak value		3	0.1252	43.05	19.88	62.93	81.03	18.1	Peak value
4	0.362	33.84	19.89	53.73	71.81	18.08	Peak value		4	0.434	30.24	19.86	50.1	70.23	20.13	Peak value
5	1.35	25.76	19.82	45.58	69	23.42	Peak value		5	0.834	27.11	19.79	46.9	69	22.1	Peak value
6	4.382	31.11	19.89	51	69	18	Peak value		6	4.51	31.27	19.86	51.13	69	17.087	Peak value
Lline									N	line						
	The test results meet the CE102 GJB151B standard															

4. Appearance Specifications

4.1. Manufacturing data/dimensions

Length:	63.14mm ±2.486mm
Width:	60.60mm ±2.386mm
Height:	12.70mm ±0.50mm
Terminal length:	4.10mm ±0.80mm
Weight:	140g (Typ.)

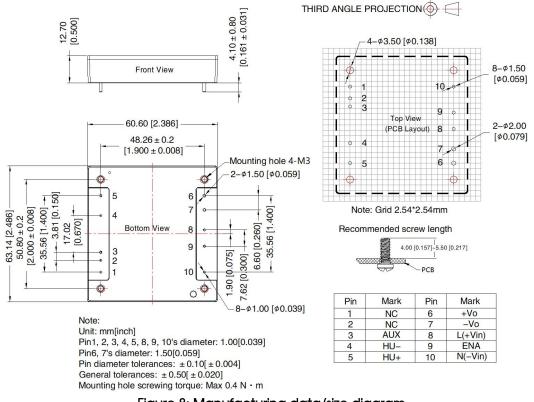


Figure 8: Manufacturing data/size diagram

4.2. Installation and disassembly methods

Installation method: Place the heat sink on the aluminum base plate and fasten the heat sink to the product using four screws.

Removing method: Use a tool to separate the four screws from the heat sink. Maximum mounting hole tightening torque: 0.4N.m.

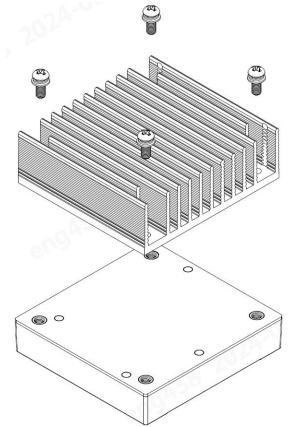


Figure 9: Product and heat sink installation and disassembly diagram

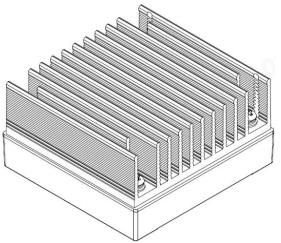


Figure 10: Schematic diagram of the finished product after installation

4.3. Cooling method

	Surface heat sink					
Lost divingtion mothod	Natural cooling					
Heat dissipation method	Conduction heat dissipation					
	In this document, " \blacksquare " indicates selected, and " \Box " indicates not selected					

For more details, please consult the MORNSUN FAE.

MORNSUN®