Regulated single output

DC-DC converter ultra-thin DFN package





## **FEATURES**

- Ultra-small, ultra-thin DFN package(3x2.8x1.6 mm)
- Operating ambient temperature range: -40°C to +105°C
- High efficiency up to 87%
- Output short-circuit protection
- Over-temperature protection
- Input under-voltage protection

KAP12T-2A is high efficiency switching regulators. The converters feature high efficiency, low loss and short-circuit protection in a compact DFN package. These products are widely used in applications such as industrial control, electric power, instrumentation and consumer electronics

| Selection Guide |           |                      |                  |                      |                                          |                   |  |  |  |  |  |
|-----------------|-----------|----------------------|------------------|----------------------|------------------------------------------|-------------------|--|--|--|--|--|
|                 |           | Input Voltage (VDC)* | C                | Output               | Full Load                                | Capacitive        |  |  |  |  |  |
| Certification   | Part No.  | Nominal<br>(Range)   | Voltage<br>(VDC) | Current<br>(mA) Max. | Efficiency (%) Typ.<br>Vin=5.0V, Vo=4.0V | Load (µF)<br>Max. |  |  |  |  |  |
|                 | KAP12T-2A | 12<br>(4.5~17)       | 0.6~5.5          | 2000                 | 87%                                      | 330               |  |  |  |  |  |

Note: ①When the input voltage spike exceeds 17VDC, an electrolytic capacitor should be added before the product input end according to the actual working conditions to filter out the voltage spike to prevent the module from being damaged by the voltage spike;

②The low-pressure output must ensure the input-output pressure difference to meet the set output requirements. For example, when  $2.5V \le Vo \le 3.3V$ , the input-output voltage difference needs to be  $\ge 2.2V$ ; When  $3.3V < Vo \le 5.5V$ , the input-output pressure difference needs to be  $\ge 3V$ .

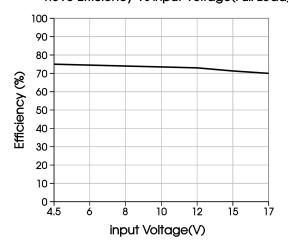
| Input Specifications      |                         |                                       |      |      |      |  |  |
|---------------------------|-------------------------|---------------------------------------|------|------|------|--|--|
| Item                      | Operating Conditions    | Min.                                  | Тур. | Max. | Unit |  |  |
| Input Current (no-load)   | Vin=12V, Vo=1.2V, Io=0A |                                       | 8    | - mA |      |  |  |
| Start-up Voltage          | 0-100%lo                | _                                     |      | 4.2  | 1/00 |  |  |
| Under-voltage Protection  | 0-100%lo                | 3                                     |      | -    | VDC  |  |  |
| Reverse Polarity at Input |                         | Avoid / Not protected                 |      |      |      |  |  |
| Input Filter              |                         | Capacitance filter                    |      |      |      |  |  |
|                           | Module on               | Ctrl pin pulled high TTL (1.5VDC~VIN) |      |      |      |  |  |
| ENI*                      | Module off              | Ctrl pin pulled low to GND (0~0.5VDC) |      |      |      |  |  |
|                           | Input current when off  | 50                                    |      |      | uA   |  |  |

Note: "The voltage of the control pin (EN) is relative to pin GND. The control pin (EN) cannot be left floating. When the EN pin is not in use, a high level (1.5VDC to VIN) can be directly connected.

| <b>Output Specification</b>        | ns                                                                   |                 |                  |               |              |
|------------------------------------|----------------------------------------------------------------------|-----------------|------------------|---------------|--------------|
| Item                               | Operating Conditions                                                 | Min.            | Тур.             | Max.          | Unit         |
| Voltage Accuracy                   | Full load, input voltage range                                       | -               | ±1               | -             |              |
| Linear Regulation                  | Full load, input voltage range                                       | -               | ±1<br>±1<br>20   |               | %<br>mVp-p   |
| Load Regulation                    | Nominal input voltage, 0% -100% load                                 |                 |                  |               |              |
| Ripple & Noise*                    | 20MHz bandwidth, nominal input voltage, full load                    |                 |                  |               |              |
| Temperature Coefficient            | Operating temperature-40°C to + 105°C                                |                 | ±0.02            |               | <b>%/</b> °C |
| Transient Response Deviation       | Name and instantian theory of COV I and the orange of the course     |                 | ±100             |               | mV           |
| Transient Recovery Time            | Nominal input voltage, 25% load step change                          |                 | 100              |               | us           |
| Short-circuit Protection           |                                                                      |                 | Continuous,      | self-recovery | ,            |
| Note: * The "parallel cable" metho | d is used for ripple and noise test, please refer to DC-DC Converter | Application Not | tes for specific | information:  |              |

**MORNSUN®** 

| General Specification                 | ns                               |                                                                   |               |             |           |  |
|---------------------------------------|----------------------------------|-------------------------------------------------------------------|---------------|-------------|-----------|--|
| Item                                  | Operating Conditions             | Min.                                                              | Тур.          | Max.        | Unit      |  |
| Operating Temperature                 | See Fig. 1                       | -40                                                               |               | 105         | - °C      |  |
| Storage Temperature                   |                                  | -55                                                               |               | 125         |           |  |
| Storage Humidity                      | Non-condensing                   | 5                                                                 |               | 95          | %RH       |  |
| Reflow Soldering Temperature          |                                  | Peak temperature $\leq$ 245°C, duration $\leq$ 60 max. over 217°C |               |             |           |  |
| Switching Frequency                   | Full load, nominal input voltage | 1.4                                                               |               |             |           |  |
| MTBF                                  | MIL-HDBK-217F@25°C               | 10000                                                             |               |             | k hours   |  |
| Operating altitude                    |                                  |                                                                   |               | 2000        | m         |  |
| Vibration                             |                                  | 10-150                                                            | Hz, 5G, 0.75n | nm. along X | , Y and Z |  |
| Moisture Sensitivity Level<br>(MSL)** | IPC/JEDEC J-STD-020D.1           | Level 3                                                           |               |             |           |  |
| Pollution Degree                      |                                  | PD 3                                                              |               |             |           |  |


| Mechanical Specific | <u>ations</u>       |
|---------------------|---------------------|
| Dimensions          | 3 x 2.8 x 1.6 mm    |
| Weight              | 0.046g (typ.)       |
| Cooling Method      | Free air convection |

# Typical Characteristic Curves

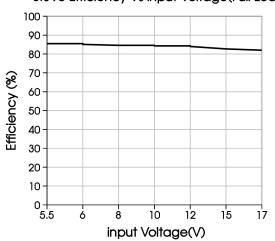
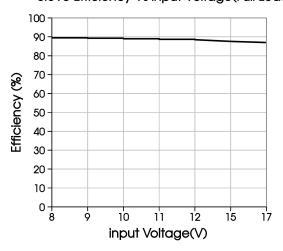
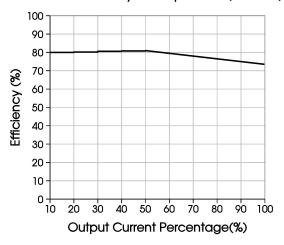


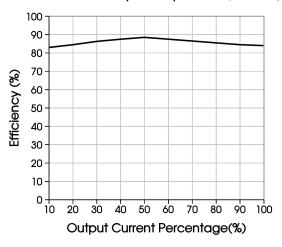

Fig. 1


#### 1.8Vo Efficiency Vs input Voltage(Full Load)




#### 3.3Vo Efficiency Vs input Voltage(Full Load)




#### 5.0Vo Efficiency Vs input Voltage(Full Load)



## 1.8Vo Efficiency Vs Output Load(Vin=12V)



#### 3.3Vo Efficiency Vs Output Load(Vin=12V)



#### 5.0Vo Efficiency Vs Output Load(Vin=12V)

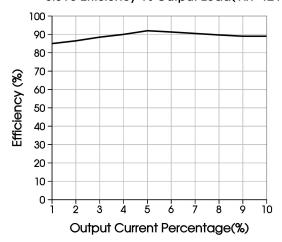
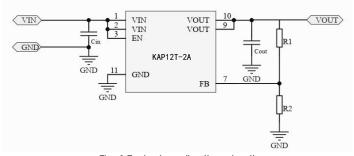




Fig. 1

## Design Reference

## 1. Typical application



| Output<br>voltage | Cin<br>(ceramic<br>capacitor | Cout<br>(ceramic<br>capacitor | RI            | R2    |
|-------------------|------------------------------|-------------------------------|---------------|-------|
| 0.6V              |                              | 00/1-/1/07                    | <b>3k</b> Ω   | 1     |
| 1.8V<br>3.3V      | 10uF/25V                     |                               | 3kΩ           | 1.5kΩ |
|                   |                              | 226k/16V                      | <b>6.8k</b> Ω | 1.5kΩ |
| 5.0V              |                              |                               | 11 <b>k</b> Ω | 1.5kΩ |

Table 1

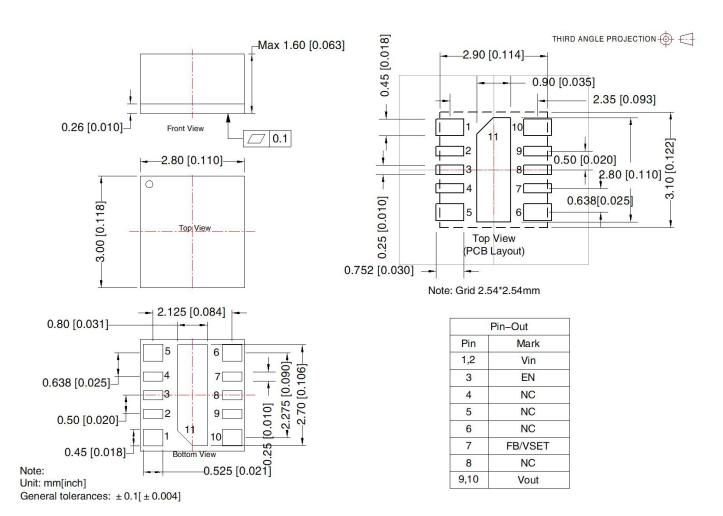
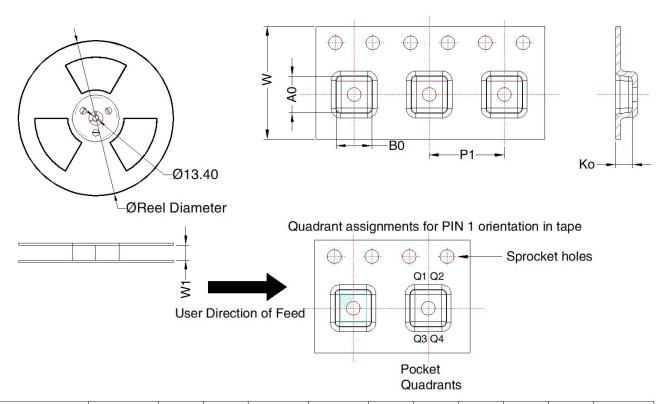

Output voltage:  $Vout = 0.6 \times (1 + \frac{R_1}{R_2})$ 

Fig. 3 Typical application circuit

#### Notes:


- 1. The required Cin and Cout capacitors must be connected as close as possible to the terminals of the module;
- 2. Refer to Table 1 for Cin and Cout capacitor values. For certain applications, increased values and/or tantalum or low ESR electrolytic capacitors may also be used instead;
- 3. Converter cannot be used for hot swap and with output in parallel.
- 2. For additional information please refer to DC-DC converter application notes on www.mornsun-power.com

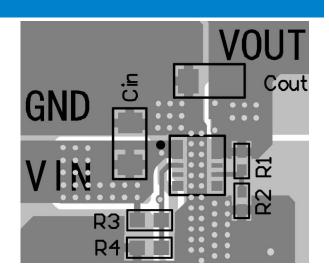
## **Dimensions and Recommended Layout**





## Tape/Reel packaging




| Device    | Package<br>Type | Pin | MPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|-----------|-----------------|-----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| KAP12T-xA | QFN             | 10  | 1050 | 178.0                    | 12.4                     | 3.8        | 3.9        | 1.8        | 8.0        | 12.0      | Q1               |

## PCB Recommended layout

KAP12T-1A series switching frequency up to 1.4MHz, PCB layout has a greater impact on product performance, when designing the PCB, please refer to the following points.

- Keep the component layout as compact as possible.
- Keep the input capacitors Cin as close as possible to VIN and GND, and Cin is within 3mm of the product VIN and GND.
- Keep the output capacitors Cout as close as possible to VOUT and GND, and Cout is within 3mm of the product VOUT and GND.
- Use wide and short alignments for main power alignment.

Refer to the diagram on the right for specific layout





#### Notes:

- 1. For additional information on Product Packaging please refer to <a href="www.mornsun-power.com">www.mornsun-power.com</a>. Tape/Reel packaging bag number: 58240119;
- 2. The maximum capacitive load offered were tested at nominal input voltage and full load;
- 3. Unless otherwise specified, parameters in this datasheet were measured under the conditions of Ta= $25^{\circ}$ C, humidity<75%RH with nominal input voltage and rated output load;
- 4. All index testing methods in this datasheet are based on our company corporate standards;
- 5. We can provide product customization service, please contact our technicians directly for specific information;
- 6. Products are related to laws and regulations: see "Features" and "EMC";
- 7. Our products shall be classified according to ISO14001 and related environmental laws and regulations, and shall be handled by qualified units.

# MORNSUN Guangzhou Science & Technology Co., Ltd.

Address: No. 8 Nanyun 4th Road, Huangpu District, Guangzhou, China Tel: 86-20-38601850 Fax: 86-20-38601272

E-mail: info@mornsun.cn

www.mornsun-power.com

**MORNSUN®** 

MORNSUN Guangzhou Science & Technology Co., Ltd.