
Application Guide for LS-R3 Series

Smart miniature circuit breaker

Smart gateway

Portable charging box

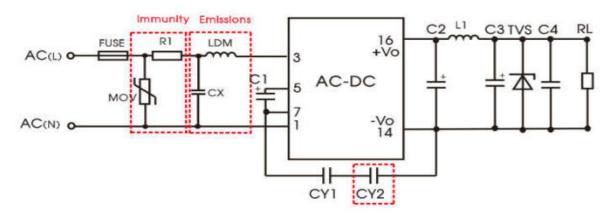
Content

I. Preface	3
2. Peripheral device selection	4
2.1. Fuse	5
2.2. Wire-wound resistor	(
2.3. Class-X capacitor	(
2.4. Differential mode inductance	7
2.5. Input filter capacitance	7
2.6. Class-Y Capacitor	8
2.7. Output Filter Capacitor (Solid Capacitor)	9
2.8. Output differential mode inductor	10
2.9. Output Filter Capacitor (Electrolytic Capacitor)	10
3. PCB design	11
3.1. PCB Wire Width Design	11
3.2. PCB layout and safety distance design.	12
4. Recommended solutions and relevant data (BOM, PCB, Layout and test report)	14
4.1. LS03-13BxxR3 series uses 12VDC output as an example to recommend solutions and data packages	14
4.1.1. Minimization solution (Achieve normal output function)	14
4.1.2. EMS (EFT: ±2KV, Surge: line to line ±1KV) and EMI (Class B)	16
4.1.3. EMS (EFT: ±4KV, Surge: line to line ±2KV) and EMI (Class A)	21
4.1.4. EMS (EFT: ±4KV, Surge: line to line ±2KV) and EMI (Class B)	26
4.1.5. EMS (EFT: ±4KV, Surge: line to line ±2KV) and EMI (Class B) that meets EN60335	32
4.2. LS05-13BxxR3 series uses 12VDC output as an example to recommend solutions and data packages	34
4.2.1. Minimization solution (Achieve normal output function)	34
4.2.2. EMS (EFT: ±2KV, Surge: line to line ±1KV) and EMI (Class B)	36
4.2.3. EMS (EFT: ±4KV, Surge: line to line ±2KV) and EMI (Class A)	42
4.2.4. EMS (EFT: ±4KV, Surge: line to line ±2KV) and EMI (Class B)	47
4.2.5. EMS (EFT: ±4KV, Surge: line to line ±2KV) and EMI (Class B), meets EN60335 standard	53
4.3. LS10-13BxxR3P series uses 12VDC output as an example to recommend solutions and data packages	55
4.3.1. Minimization solution (Achieve normal output function)	55
4.3.2. EMS (EFT: ±2KV, Surge: line to line ±1KV) and EMI (Class B)	57
4.3.3. EMS (EFT: ±4KV, Surge: line to line ±2KV) and EMI (Class A)	62
4.3.4. EMS (EFT: ±4KV, Surge: line to line ±2KV) and EMI (Class B)	68
4.3.5. EMS (EFT: ±4KV, Surge: line to line ±2KV) and EMI (Class B) meets EN60335 standard	73
4.4. LS10-13BxxR3 series uses 12VDC output as an example to recommend solutions and data packages	75
4.4.1. Minimization solution (Achieve normal output function)	75
4.4.2. EMS (EFT: ±2KV, Surge: line to line ±1KV) and EMI (Class B)	77

4.4.3. EMS (EFT: ±4KV, Surge: line to line ±2KV) and EMI (Class A)	82
4.4.4. EMS(EFT: ±4KV, Surge: line to line ±2KV)及 EMI(Class B)	87
4.4.5. EMS (EFT: ±4KV, Surge: line to line ±2KV) and EMI (Class B) meets EN60335 standard	93
5. Version and undate record	94

1. Preface

In order to solve the LS core board may encounter in the use of the wrong peripheral device selection and



unreasonable PCB design, resulting in abnormal application. MORNSUN has released this design guide. This guide recommends the selection of peripheral components on the LS-R3 core board and PCB design. At the same time, in order to make customer design more convenient, MORNSUN recommends different types of solutions in Chapter 4 of this application guide, and provides test reports and recommended peripheral device type.

2. Peripheral device selection

The combination of Mornsun LS core board and different recommended peripheral components can meet the power supply module requirement of various applications and equipment. The complete recommended peripheral circuit can achieve EMI (CISPR32/EN55032) CLASS B level, EMS (IEC/EN61000) EFT ±4KV and Surge ±2KV.

The peripheral recommended circuit is as follows:

Note: In order to meet the IEC/EN60335 certification for home appliances, CY2 is mandatory. If there is no IEC/EN60335 certification requirement, just need add CY1.

Peripheral device code	Component
FUSE	Fuse
R1	Wire-wound Resistor
CX	Class-X Capacitor
LDM	DM inductor
C1	Input filter capacitor
CY1、CY2*	Class-Y Capacitor
C2	Output filter capacitor
L1	Output inductor
C3	Output filter capacitor

The selection of each peripheral device are based on various factors when designing the power supply module. For specific considerations, please refer to the following device selection guide.

2.1. Fuse

Fuse is also called as current fuse, and the IEC127 standard defines it as a "fuse-link". It is mainly used for overload protection in the circuit. The fuse will thermal fusing due to high temperature after the current rises abnormally, and cut off the electrical connection after thermal fusing, which protects the circuitry connected behind. The fuse selection mainly considers the following aspects:

1) Rated voltage

Rated voltage means the highest voltage that the fuse can withstand during and after the overload current is cut off. The rated voltage of the selected fuse must be higher than or equal to the highest voltage in the circuit.

Take LS05-13BXXR3 as an example, the input voltage range is 85-305VAC. it can be compatible with 115VAC, 230VAC, 277VAC grid, then the fuse selection can refer to the following table:

Power gird voltage	Fuse selection(Rated voltage)
110VAC	125VAC
230VAC	250VAC
277VAC	300VAC

2) Rated current

Rated current (In) refers to the working current that the fuse can withstand, it means that the fuse should be able to work stably for a long time under this current load. This value is determined by the manufacturer. The rated current is usually the standard recommended current, such as 1, 1.25, 2, 3.15, etc. (unit: A)

Taking LS05-13BXXR3 as an example, According to the datasheet, the maximum value of the input current of the product is several hundred mA. However, the actual rated current selection should also consider the input impulse current and surge current. According to the data given in the datasheet, the impulse current is around 23A, and the time is at the level of microsecond. At the same time, the surge current is related to the surge level to be achieved and the selection of the MOV. The current value is basically a few hundred amperes or higher, and the time is also at the level of microsecond. Therefore, selecting a fuse based on the rated current is only a basic condition, that is, the rated current of the fuse must be higher than the actual steady-state operating current.

3) Melting Integral (I²t)

It refers to the energy value when the fuse is melted, which indicates the surge capacity that the fuse can withstand, I is the overload current, and t is the time required for fusing. The fuse selection needs to consider the surge and input inrush current of the power supply module, that is refer to the fuse datasheet based on the calculated value of I²t. The actual value selected higher than the calculated value is enough, and the value of I²t can be preliminarily estimated during model selection.

Taking LS05-13BXXR3 as an example, the current flowing through the fuse during $\pm 2KV$ surge test according to IEC/EN61000-4-5 is estimated to be about several hundred ampere, and the time is about tens of microseconds. Then the final value must be higher than the estimated melting heat energy value.

2.2. Wire-wound resistor

The use of wire-wound resistor in LS recommended peripheral circuits is mainly to reduce input inrush current and improve surge immunity The main consideration in the selection of wire-wound resistor is:

1) Rated power

The rated power of a resistor refers to the power that the resistor can withstand for a long time in the circuit. The rated power value will decrease as the operation temperature rises. Please refer to the curve given by the resistor manufacturer for the specific derating curve.

Taking LS05-13BXXR3 as an example, the operating current is 0.1A when the input voltage is 230Vac. In other words, the current through the resistor is 0.1A, and the recommended resistance value in the datasheet is 12Ω , so the power consumed by the resistor is 0.12W during steady state operation. Considering that there would be a derating when the operating temperature and large current when there is surge or turn on, a $12\Omega/3W$ resistor is recommended.

Note: Considering the large transient power when there is surge or inrush current when start up, please do not select chip resistor or carbon film resistor.

2.3. Class-X capacitor

Class-X capacitor is also called capacitor for suppressing electromagnetic interference of power supply, it is generally used between L and N of the AC input. To suppress differential mode interference and improve the EMI performance of power supply module. The selection of Class-X capacitor mainly needs to take the following aspects into consideration:

1) Rated voltage

It refers to the maximum DC voltage of the capacitor or the peak value of the AC voltage of the maximum effective value. This voltage value is given within the promised operating temperature range. The rated voltage of the Class-X capacitor must be higher than the voltage of the application circuit (including voltage fluctuations), otherwise the Class-X capacitor will be damaged (Capacity drops or open circuit).

2) Rated temperature

The rated temperature refers to the maximum operating temperature at which the rated voltage can be continuously applied. This value needs to be selected according to the operating environment temperature, and the selected value must be wider than the actual operating temperature range.

Take LS05-13BXXR3 as an example, the working voltage range is 85-305VAC. Considering the upper limit of the working voltage is 305VAC, it is recommended to choose a capacitor of 0.1uf/305VAC. The 0.1uf refers to the capacitance, which is the value recommended based on the actual EMI debugging. As with the fuse selection, if the working voltage is not 305VAC, the customer may choose according to the actual grid voltage.

Note: According to the certification requirements, the Class-X capacitor needs to be connected in parallel with the bleeder resistance, the recommended resistance value is less than $3.8M\Omega$, and And actually it need to be selected according to the certification standard.

2.4. Differential mode inductance

Differential mode inductor is an inductor that has a large inductance working on high-frequency differential mode interference, and it's also called a differential mode choke coil. It is mainly used to suppress the high frequency interference noise of the differential mode. For LS products, it is used to suppress the high frequency noise between the Live and the Neutral. The selection of differential mode inductance mainly needs to take the following aspects into consideration:

1) Rated current

Rated current refers to the current that can be withstood within the operating temperature range. Therefore, the selected differential mode inductor rated current value must be greater than the actual current passed.

2) Inductance value

The change of inductance will affect the EMI performance of LS products, so please select according to recommended inductance value.

3) Operating temperature

It should be noted that the upper limit of this temperature refers to the temperature of the differential mode inductor. In other words, it is necessary to consider the heating of the inductor during operation.

2.5. Input filter capacitance

LS is only the core control board, and the input filter capacitor needs to be added to realize the normal power supply function. It is recommended to use aluminum electrolytic capacitors in LS applications. The selection of input filter capacitors mainly needs to take the following aspects into consideration:

1) Rated voltage

The selection of the rated voltage is mainly related to the upper limit of the input AC voltage. When choosing the input filter capacitor, the rated voltage must be higher than 1.414 times of the upper limit of the input AC voltage. The following is the selection of capacitor rated voltage in different grid:

Upper limit of grid voltage	Input filter capacitor (Rated voltage)
144VAC	≥250VDC
264VAC	≥400VDC
305VAC	≥450VDC

Note: Generally speaking, the higher rated voltage of the capacitor, the higher price and larger volume;

2) Operating temperature

The operating temperature also refers to the temperature of the electrolytic capacitor itself, Because the capacitor will generate heat during operation, the actual temperature of the capacitor must be lower than the promised operating

temperature. Usually, for the operating temperature range of most electrolytic capacitors, the wider range, the higher price. At the same time, the capacity of the electrolytic capacitor will decrease at low temperature, which will affect the performance of the power supply. Therefore, special attention should be paid to the low temperature working temperature and capacity decline of the electrolytic capacitor.

3) Rated Ripple Current

The ripple current of the electrolytic capacitor will cause internal heating and increase with the rise of temperature. Therefore, electrolytic capacitor manufacturers will give the maximum ripple current value that the electrolytic capacitor can withstand when designing. In practical applications, the ripple current of the electrolytic capacitor needs to be lower than the value given by the manufacturer. Otherwise, it will cause serious heating of the capacitor and shorten the lifetime.

4) Lifetime

The lifetime of an electrolytic capacitor refers to the continuous working time that the electrolytic capacitor can meet within the promised operating temperature range and ripple current. This value is tested at the maximum temperature of the capacitor and the rated ripple current. If in other temperature and ripple current conditions, the life of electrolytic capacitors needs to refer to the calculation formula given by each manufacturer.

Take LS05-13BXXR3 as an example, the working voltage range promised by is 85-305VAC. Considering the upper limit of the working voltage is 305VAC, it is recommended to choose a capacitor of 10uf/450VDC or 22uf/450VDC. Among them, 10uf and 22uf refer to the capacitance, which is the value recommended in datasheet. At a low temperature of -40°C, the capacitance of the capacitor decreases significantly, so 22uf is recommended. Same as the fuse selection, if the working voltage is not 305VAC, the customer can also select the input filter capacitor according to the actual grid voltage.

2.6. Class-Y Capacitor

Class-Y capacitors refer to the safety capacitors connected between the two power lines and the ground (L-E, N-E), mainly to suppress common mode interference. According to the different withstand voltages of Class-Y capacitors, they are divided into Y1, Y2, Y3, Y4 capacitors. The common ones are Y1 and Y2 capacitors. The selection of Class-Y capacitors mainly focuses on the following points:

1) Insulation grade

The Class-Y capacitor is a jumper capacitor. If the capacitor is incorrectly selected, the insulation level of the product will decrease, which cannot meet the safety requirements.

Capacitor types	Insulation grade	Rated voltage
Y1	Double insulation or reinforced insulation	Y1≥250V
Y2	Basic insulation or supplementary insulation	150V≤Y3≤250V

Y3	Basic insulation or supplementary insulation	150V≤Y3≤250V
Y4	Basic insulation or supplementary insulation	Y4<150V

Notes: Some standards require the use of Class-Y capacitors in series to achieve higher creepage and clearance Distance.

2) Operating temperature

Class-Y capacitors will generate heat during use, so the temperature range of Y capacitors must be controlled within the product specifications.

Take LS05-13BXXR3 as an example, we recommends Y1 capacitors in normal use. In the peripherals that meet the IEC/EN60335 certification for home appliances, the two Class-Y capacitors is recommended in series. Can be selected as Y1.

2.7. Output Filter Capacitor (Solid Capacitor)

The output filter capacitor is must to be connected. By adding this capacitor at the output can achieve smooth filtering of the output voltage. In LS recommended circuit is to use two output filter capacitors and a differential mode inductor to achieve output π -type filtering. The filter capacitor before π -type filtering is recommended to use solid capacitors. The main reason is that solid capacitors have lower ESR than electrolytic capacitors. The selection requirements of this capacitor can refer to following points:

1) Rated Voltage

The selection of the rated voltage of the output filter capacitor is mainly related to the upper limit of the output voltage. The rated voltage of the capacitor must be higher than the output rated voltage during designing. For products with output overvoltage, the rated voltage of the output filter capacitor is generally selected to be greater than the overvoltage protection point.

2) Operating Temperature

The operating temperature means the temperature of the solid capacitor body. The capacitor itself will also generate heat during operation. The actual temperature of the capacitor must be lower than the promised operating temperature. Generally speaking, the wider the operating temperature range of solid capacitors, the higher price it will be. At the same time, the capacity will decrease at low temperature, which will affect the performance of the power supply. Therefore, special attention should be paid to the low temperature working temperature and capacity decline of the capacitor.

3) Ripple Current

The ripple current of the solid capacitor will cause internal heating, and it will increase as the temperature rises. Therefore, the solid capacitor manufacturer will give the maximum ripple current value that the solid capacitor can withstand when designing. In practical applications, the ripple current of the solid capacitor needs to be lower than the value given by the manufacturer. Otherwise it will cause serious

heating of the capacitor and shorten the lifetime.

4) Lifetime

The lifetime of solid capacitor refers to the continuous working time that the solid capacitor can meet within the promised operating temperature range and rated ripple current. This value is tested at the highest temperature of the capacitor and the rated ripple current. The lifetime of solid capacitors under other conditions of temperature and ripple current needs to refer to the calculation formula given by each capacitor manufacturer.

Taking LS05-13B12R3 as an example, the output voltage is 12V. Considering the commonly used voltage class of solid capacitor and certain voltage margin, we recommends the solid capacitor of 270uF /16V.

2.8. Output differential mode inductor

The output differential mode inductor and output filter capacitor recommended by our company form a π -type filter, which can reduce the output ripple very well. The selection of output differential mode inductance mainly considers the following points:

1) Rated Current

The rated current refers to the current that can withstand the flow of current within the operating temperature range promised by the differential mode inductor, so the selected differential mode inductor's rated current value must be greater than the actual current flowing..

2) Inductance value

The value change of inductance will affect the output ripple of LS products, so please select according to our recommended inductance value.

3) Operating Temperature

Operating Temperature refers to the operating temperature range of the differential mode inductor. It should be noted that the upper limit of this temperature refers to the temperature of the differential mode inductor. The heating of the inductor during normal operation must be considered.

4) DCR(Direct Current Resistance)

The value change of inductance will affect the output ripple of LS products, so please select according to our recommended inductance value.

2.9. Output Filter Capacitor (Electrolytic Capacitor)

The electrolytic capacitor of the output filter, the output differential mode and the output solid capacitor together form a π -type filter. The selection requirements of the output filter electrolytic capacitor can refer to following points.

1) Rated Voltage

The selection of the rated voltage of the output filter capacitor is mainly related to the upper limit of the output voltage.

The rated voltage of the capacitor must be higher than the output rated voltage during designing. For products with output overvoltage, the rated voltage of the output filter capacitor is generally selected to be greater than the overvoltage protection point.

2) Operating Temperature

The operating temperature means the temperature of the electrolytic capacitor body. The capacitor will also generate heat during operation. The actual temperature of the capacitor must be lower than the promised operating temperature. Generally speaking, the wider the operating temperature range of electrolytic capacitors, the higher price it will be. At the same time, the capacity of the electrolytic capacitor will decrease at low temperature, which will affect the performance of the power supply. Therefore, special attention should be paid to the low temperature working temperature and capacity decline of the electrolytic capacitor.

3) Ripple Current

The ripple current of the electrolytic capacitor will cause internal heating, and it will increase as the temperature rises. Therefore, the electrolytic capacitor manufacturer will give the maximum ripple current value that the electrolytic capacitor can withstand when designing. In practical applications, the ripple current of the electrolytic capacitor needs to be lower than the value given by the manufacturer. Otherwise it will cause serious heating of the capacitor and shorten the lifetime.

4) Lifetime

The lifetime of electrolytic capacitor refers to the continuous working time that the electrolytic capacitor can meet within the promised operating temperature range. This value is tested at the maximum temperature of the capacitor and the rated ripple current. The lifetime of electrolytic capacitor under other conditions of temperature and ripple current needs to refer to the calculation formula given by each capacitor manufacturer.

Taking LS05-13B12R3 as an example, the output voltage is 12V. Considering the commonly used voltage class of electrolytic capacitor and certain voltage margin, Mornsun recommends 47uf/35V electrolytic capacitor. The rated voltage of the electrolytic capacitor here could be selected as 16V, but in order to meet the requirements of 15V and 24V, 35V electrolytic capacitor is recommended.

3. PCB design

After adopting the LS core power board solution, only a few simple external device need be added to realize the power supply function. Hence the difficulty of self-design is greatly simplified. Only the following two aspects are mainly considered in the design of the peripheral PCB of LS:

3.1. PCB Wire Width Design

The minimum width and thickness of the wire need to be determined according to the current carrying capacity and the maximum allowable temperature rise of the wire. According to the IPC-2221A general standard for printed plate design, the following calculation formula can be referred:

$$I = K * \Delta T^{0.44} * A^{0.725}$$

I is the current flowing through the PCB wire, in amperes (A)

A is the cross-sectional area of the wire, in square mils (mil2)

 Δ T is the temperature rise in degrees Celsius (°C)

K is a constant, K=0.024 for the inner PCB and K=0.048 for the outer PCB

For convenient design, please refer to following table:

Copper thicks	ness 1OZ(35um)	Copper thickness 1.5OZ(50um)		Copper thickn	ess 2OZ(75um)		
0.15	0.2	0.15	0.5	0.15	0.7		
0.2	0.55	0.2	0.7	0.2	0.9		
0.3	0.8	0.3	1.1	0.3	1.3		
0.4	1.1	0.4	1.35	0.4	1.7		
0.5	1.35	0.5	1.7	0.5	2		
0.6	1.6	0.6	1.9	0.6	2.3		
0.8	2	0.8	2.4	0.8	2.8		
1	2.3	1	2.6	1	3.2		
1.2	2.7	1.2	3	1.2	3.6		
1.5	3.2	1.5	3.5	1.5	4.2		
2	4	2	4.3	2	5.1		
2.5	4.5	2.5	5.1	2.5	6		
Note: This data is give	Note: This data is given according to the temperature rise of the copper skin $\Delta T=10^{\circ}C$						

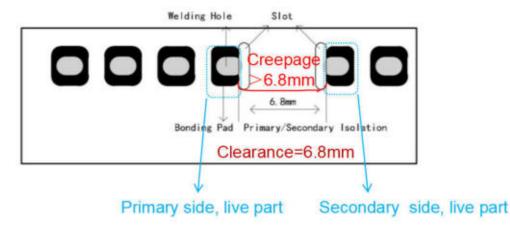
3.2. PCB layout and safety distance design

The LS core board has been considered the requirements of different safety standards. LS core board meets the standard of IEC/EN61558, IEC/EN60335 and IEC/EN/UL62368 requirement. The safety design of the peripheral PCB trace design mainly consider the safety distance requirements between the input L and N lines of the LS core board, and between the input and the output. There are two points for safety distance:

1) Electrical clearance

Electrical clearance refers to the shortest distance measured between two conductive parts or between a conductive part and the equipment protection interface. That is, the shortest distance of insulation can be achieved through air while ensuring the stability and safety of electrical performance.

Take LS series as an example, the distance between the live part of the input side L line and the live part of the N line must be greater than or equal to the clearance distance required by the corresponding safety regulations. The


distance between the input live part and the output live part should be greater than or equal to the clearance distance required by the corresponding safety regulations.

2) Creepage distance

Creepage distance refers to the distance between two conductive parts measured along the insulating surface. Under different usage conditions, the insulating material around the conductor is polarized, causing the insulating material to be charged. Because the creepage distance refers to the distance through the surface of an object, the creepage distance can generally be increased by means of slotting.

The understanding of creepage distance and electrical clearance can be seen in the recommended pad design in LS-R3 datasheet. Take LS05-13BxxR3 as an example. The following is the analysis of creepage distance and electrical clearance:

LS05-13BxxR3 series recommended pad

It can be seen from the figure that the electrical clearance refers to the shortest distance between the input terminal and the output terminal, and the creepage distance refers to the shortest distance from the primary terminal to the output terminal after bypassing the slotted hole.

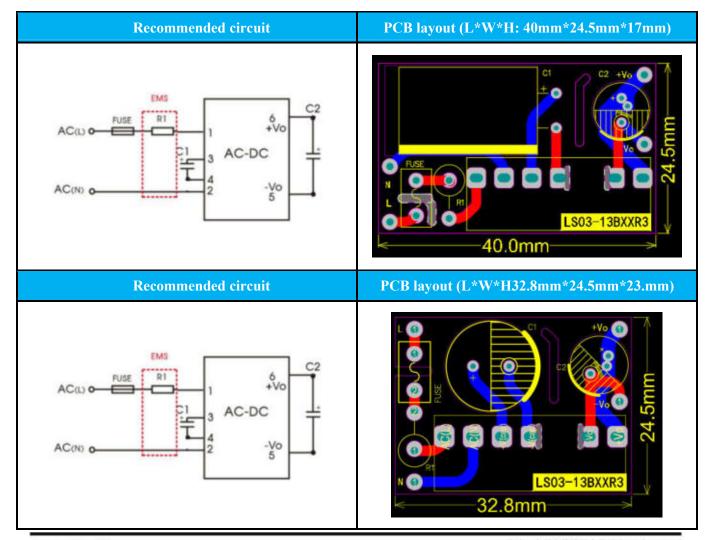
The three standards referenced in LS peripheral design have requirements for creepage distance and electrical clearance as shown in the following table. The recommended distances in this table are for reference only. For details, please refer to the latest version of the standard for design.

Location	Standard	Creepage distance	Electrical clearance
	IEC/EN61558	3mm	3mm
Between L line and N line	IEC/EN60335	3mm	3mm
	IEC/EN/UL62368	3mm	3mm
	IEC/EN61558	6mm	5.5mm
Between input and output	IEC/EN60335	6mm	6mm
	IEC/EN/UL62368	6mm	5mm

Note: The selection of this safety distance is based on the upper limit of the input voltage of 277VAC. If the input

voltage is low, the PCB trace creepage distance and electrical clearance can be designed according to the requirements of various standards.

4. Recommended solutions and relevant data (BOM, PCB, Layout and test report)


To facilitate the design of customers, MORNSUN integrated the design solutions according to the common EMC requirements. And take LS05-13B12R3 as an example for the component selection and testing. Customers can refer to it based on their requirement for the power supply.

4.1. LS03-13BxxR3 series uses 12VDC output as an example to recommend solutions and data packages

4.1.1. Minimization solution (Achieve normal output function)

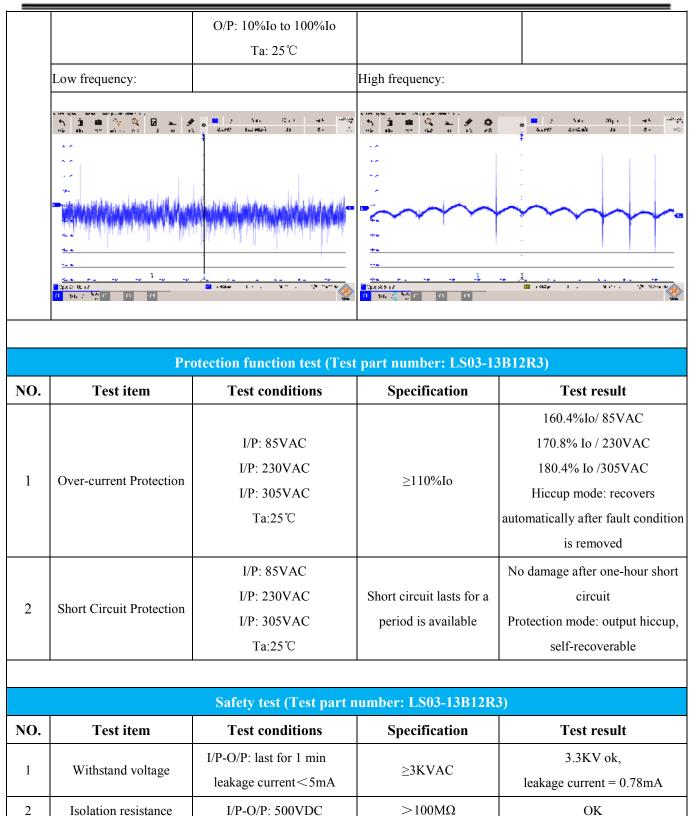
This solution can achieve normal output of power supply module, but we do not promise other performance. This solution suitable for strict cost requirements, but no performance requirements application.

1) Design circuit and PCB layout are as follows:

Notes: There are two kinds of PCB layouts are recommended for this solution. The first is for strict height requirement situations, and the second is for situations where length and width are required but the height is less limited.

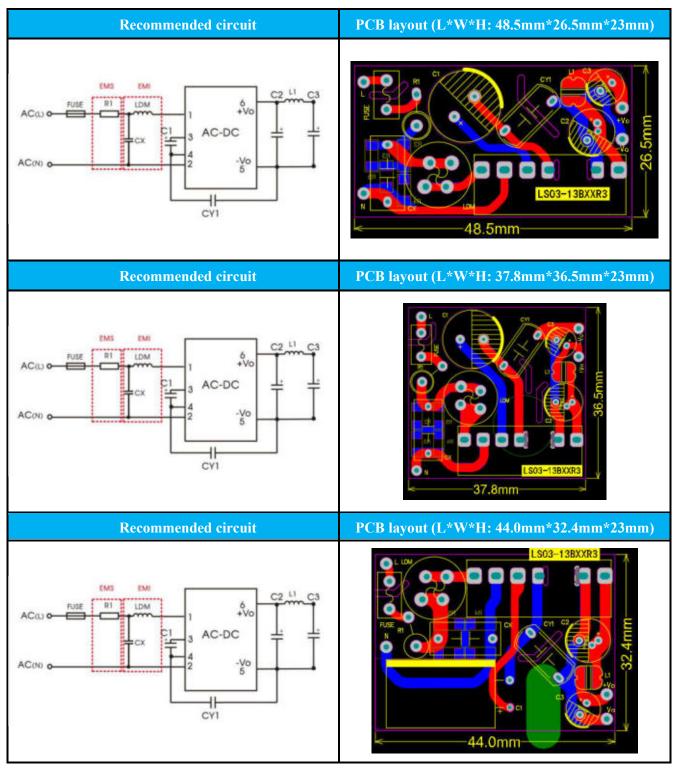
2) BOM

PCB	Туре	Recommended material Recommended material combination 2		Recommended material combination 3				
position			Brand	P/N	Brand	P/N	Brand	P/N
FUSE	FUSE	1A/300VAC	Better	9321100	Conquer	MST-1A-300V	Littelfuse	36911000000
R1	Wire-wound Resistor	12Ω/3W/Φ5* 15	PAK HENG	NKN3WJ12RT	Yageo	NKN3WSJT-73 -12R	Vishay	RWM041012R0JR15 E1
C1	Input filter capacitor	22uF/450V/ Φ12.5*20	SAMXON	ERD226M2WI 20RR4RF	Rubycon	450BXW22ME FR18X16	Rubycon	450BXW22MEFR12. 5X20
C2	Output filter capacitor	270uF/16V/ Ф6.3*8	SAMXON	UER277M1CE 08TUX0CR	ELITE	UPE1C271MN N6308	NCC	RS81C271MDN1


Notes: there are three component combinations above for reference.

3) Test report

	General performance test (Test part number: LS03-13B12R3)							
NO.	Test item	Test conditions	Specification	Test result				
1	No load power consumption	I/P: 230 VAC O/P: Min LOAD Ta: 25°C	≤0.15W	0.098W				
2	Output Voltage Accuracy	I/P: 85 to 305VAC O/P: 10%Io to 100%Io Ta: 25°C	±5%	1.5%				
3	Output voltage tolerance	I/P: 85 to 305VAC O/P: 100%Io Ta: 25°C	±1.5%	0.24%				
4	Load regulation	I/P: 85 to 305VAC O/P: 10%Io to 100%Io Ta: 25°C	±3%	0.91%				
5	Efficiency (Typ.)	I/P: 230VAC O/P: 100%Io Ta: 25°C	79%	79.03%				
6	Ripple & Noise (Max)	I/P: 85 to 305VAC	150mV	73.10mV				


4.1.2. EMS (EFT: ±2KV, Surge: line to line ±1KV) and EMI (Class B)

This solution can meet all the performance in the datasheet, as well as EMS (EFT: $\pm 2KV$, Surge: line to line $\pm 1KV$) and EMI (Class B).

1) Design circuit and PCB layout are as follows:

Note: There are three kinds of PCB layouts are recommended for this solution. The first is for strict height requirement situations, and the second is for situations where length and width are required but the height is less limited. The third is for strict width requirement situations.

2) BOM:

PCB	Type	Spec	Recommended material	Recommended material	Recommended material
position	-JP*	~pec	combination 1	combination 2	combination 3

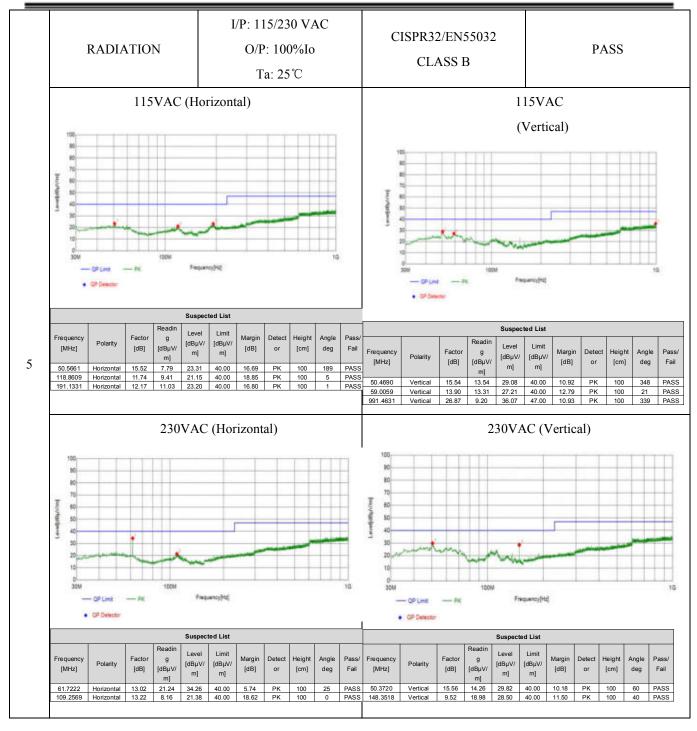
			Brand	P/N	Brand	P/N	Brand	P/N
FUSE	FUSE	1A/300VAC	Better	9321100	Conquer	MST-1A-300V	Littelfuse	80711000000
R1	Wire-wound Resistor	12Ω/3W/Φ5* 15	PAK HENG	NKN3WJ12R T	Yageo	NKN3WSJT-73- 12R	Vishay	RWM041012R0J R15E1
CX	Class-X Capacitor	0.1uF/310VA C	Faratronic	C42Q2104K4 SA405	НЈС	MKP-104K0305 AT1108-PV	TDK	B32671Z6104
LDM	Input inductor	1.2mH/0.2A	Codaca Electronic	PK0608-122 K	Wurth	768772122	Bourns	RLB9012-122KL
C1	Input filter capacitor	22uF/450V/Ф 12.5*20	SAMXON	ERD226M2 WI20RR4RF	Rubycon	450BXW22ME FR18X16	Rubycon	450BXW22MEF R12.5X20
CY1	Class-Y Capacitor	1nF/ 400VAC	Wmec	HJE102M	Walsin	YU1AH102M0 70BASDAH	TDK	CD85-E2GA102 MYASA
C2	Output filter capacitor	270uF/16V/Ф 6.3*8	SAMXON	UER277M1C E08TUX0CR	ELITE	UPE1C271MN N6308	NCC	RS81C271MDN1
L1	Output inductor	4.7uH/2.2A	Hua Chen	HCCD0403T- 4R7M	Chilisin	BPSD00050432 4R7	Bourns	SDE0403A-4R7 M
С3	Output filter capacitor	47uF/35V	SAMXON	ESK476M1V D11TUSRP	Nichicon	UHV1V470MD D	Rubycon	35ZLH47MHFC T15X11

3) Test report

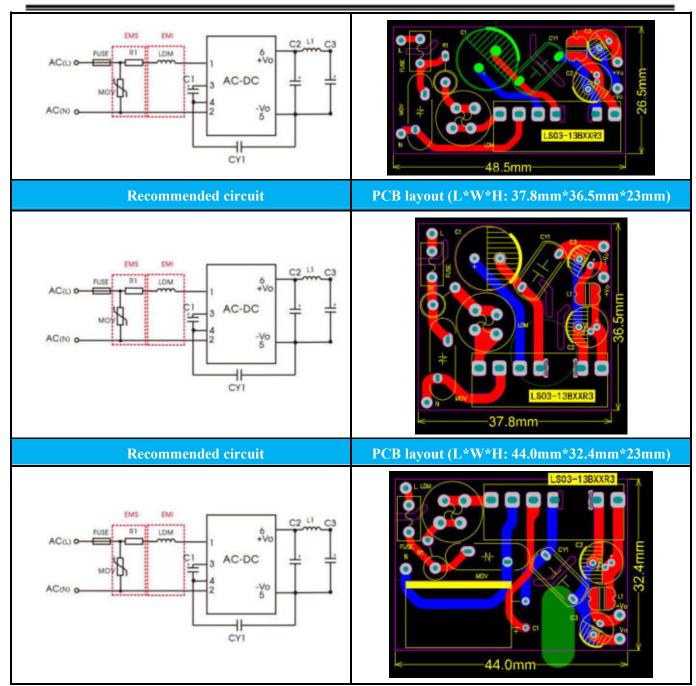
	General performance test (Test part number: LS03-13B12R3)							
NO.	Test item	Test conditions	Specification	Test result				
1	No load power consumption	I/P: 230 VAC O/P: No Load Ta: 25°C	≤0.15W	0.104W				
2	Output Voltage Accuracy	I/P: 85 to 305VAC O/P: 10%Io to 100%Io Ta: 25℃	±5%	1.08%				
3	Output voltage tolerance	I/P: 85 to 305VAC O/P: 100%Io Ta: 25°C	±1.5%	0.50%				
4	Load regulation	I/P: 85 to 305VAC O/P: 10%Io to 100%Io Ta: 25℃	±3%	1.08%				

5	Efficiency (Typ.)	I/P: 230VAC O/P: 100%Io Ta: 25°C	77%	78.292%
	Ripple & Noise (Max)	I/P: 85 to 305VAC O/P: 10%Io to 100%Io Ta: 25°C	150mV	58mV
6	Low frequency:	**************************************	High frequency:	77 Y C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

	Protection function test (Test part number: LS03-13B12R3)							
NO.	Test item	Test conditions	Specification	Test result				
1	Over-current Protection	I/P: 85VAC I/P: 230VAC I/P: 305VAC Ta:25°C	≥110%Io	160.4%Io/ 85VAC 170.8% Io / 230VAC 180.4% Io /305VAC Hiccup mode: recovers automatically after fault condition is removed				
2	Short Circuit Protection	I/P: 85VAC I/P: 230VAC I/P: 305VAC Ta:25°C	Short circuit lasts for a period is available	No damage after one-hour short circuit Protection mode: output hiccup, self-recoverable				


Safety test (Test part number: LS03-13B12R3)							
NO.	Test item	Test conditions	Specification	Test result			
1	Withstand voltage	I/P-O/P: last for 1 min leakage current < 5mA	≥3KVAC	3.3KVAC ok, Leakage current 0.78mA			
2	Isolation resistance	I/P-O/P: 500VDC	$>$ 100M Ω	OK			
'							

		EMC test (Test part n	umber: LS03-13B12R3)			
NO.	Test item	Test conditions	Specification	Test result		
1	Surge	I/P: 230 VAC O/P: 100%Io Ta: 25°C	IEC/EN61000-4-5 line to line ±1KV	PASS		
2	EFT	I/P: 230 VAC O/P: 100%Io Ta: 25℃	IEC/EN61000-4-4 ±2KV	PASS		
3	ESD	I/P: 230 VAC O/P: 100%Io Ta: 25℃	IEC/EN61000-4-2 Contact ±6KV	PASS		
4	CONDUCTION	I/P: 115/230 VAC O/P: 100%Io Ta: 25℃	CISPR32/EN55032 CLASS B	PASS		
	115V	AC (L Line)	115VA	.C (N Line)		
	50 50 50 50 50 50 50 50 50 50 50 50 50 5	inaquency (the:	75 10 10 20 21 10 21 10	Frequency UPs 10 30		
	4 1347MHz 03 02 100 C 2 1242MHz 03 02 100 C 3 1341MHz 0.3 0.2 10.0 G	tector Meter Read Meas Level Limit Limit Dist. AVC 20.6 31.1 46.0 -14.9 Pwsk 28.8 30.3 56.0 -16.7 MSSS 27.5 36.1 30.0 17.9 AVC 14.9 25.8 50.0 -24.2	3 1350MHz 03 02 10 0 C_ 2 1341MHz 03 02 10 0 OC 4 1206MHz 0.0 0.2 10.0 QQ	ector Mcter Read Meas Level Limit Limit Dis AVC 18.3 28.8 46.0 -17.2 Neck 24.8 35.3 56.0 -90.7 Se8.8 24.8 35.3 56.0 20.7 Neck 24.8 35.3 50.0 -28.9		
	230V	AC (L Line)	230VAC (N Line)			
	00 Lend 1 E110032 PK Chad S Lend 2 E110033 PK Chad S 00 00 00 00 00 00 00 00 00 00 00 00 00	Friegrang SPE	150	piercy Mec		
	1 1263MHz 0.3 0.2 10.0 2 1230MHz 0.3 0.2 10.0 3 1.275MHz 0.3 0.2 10.0	Meter Read Meas Level Limit Limit Dist. 30hek 32.9 43.5 56.0 -12.5 30hek 32.8 43.3 56.0 -12.7 30hek 12.6 41.1 56.0 12.9 30hek 32.5 43.0 56.0 -13.0	TD Frequency Probe Cable Atten. Detect	ok 25.4 35.9 56.0 20.1		



4.1.3. EMS (EFT: ±4KV, Surge: line to line ±2KV) and EMI (Class A)

This solution can meet all the performance in the datasheet, as well as EMS (EFT: ± 4 KV, Surge: line to line ± 2 KV) and EMI (Class A).

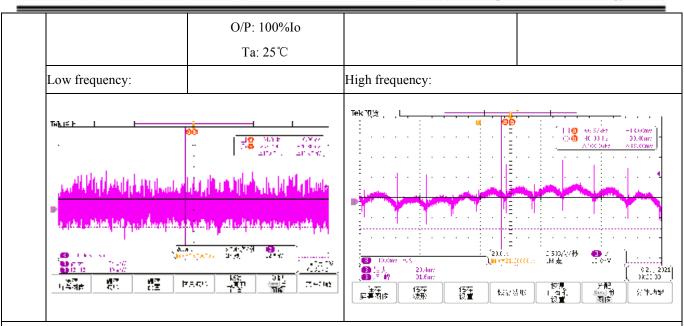
1) Design circuit and PCB layout are as follows:

Recommended circuit	PCB layout (L*W*H: 48.5mm*26.5mm*17mm)
---------------------	--

Note: There are three kinds of PCB layouts are recommended for this solution. The first is for strict height requirement situations, and the second is for situations where length and width are required but the height is less limited. The third is for strict width requirement situations.

2) BOM:

PCB	Type Spec		Recommended material combination 1		Recommended material combination 2		Recommended material combination 3	
position			Brand	P/N	Brand	P/N	Brand	P/N
FUSE	FUSE	2A/300VAC	Better	9321200301	Conquer	MST-2A-300V	Littelfuse	36912000000


广州金升阳科技有限公司 MORNSUN Guangzhou Science & Technology Co., Ltd.

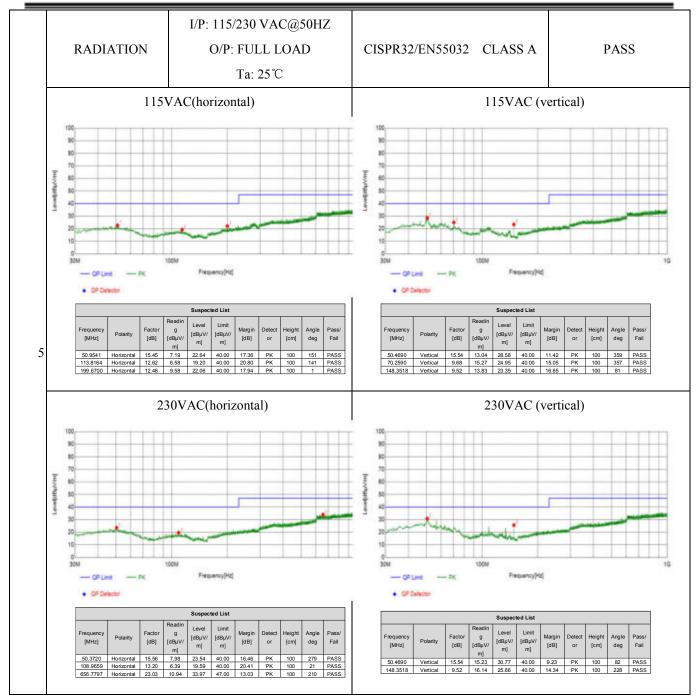
3) Test Report:

MOV	VARISTOR	S14K350	XINFUTE	DNR S14K350	Thinking	TVR14561	TDK	В
R1	Wire-wound Resistor	12Ω/3W/Φ 5*15	PAK HENG	NKN3WJ12RT	Yageo	NKN3WSJT- 73-12R	Vishay	R
LDM	input inductor	1.2mH/0.2 A	Codaca Electronic	PK0608-122K	Wurth	768772122	Bourns	R
C1	Input filter capacitor	22uF/450V /Φ12.5*20	SAMXON	ERD226M2WI 20RR4RF	Rubycon	450BXW22M EFR18X16	Rubycon	45
CY1	Class-Y Capacitor	1nF/ 400VAC	Wmec	HJE102M	Walsin	YU1AH102 M070BASD	TDK	C
C2	Output filter capacitor	270uF/16V /Ф6.3*8	SAMXON	UER277M1CE 08TUX0CR	ELITE	UPE1C271M NN6308	NCC	R
L1	Output inductor	4.7uH/2.2A	Hua Chen	HCCD0403T-4 R7M	Chilisin	BPSD000504 324R7	Bourns	SI
C3	Output filter capacitor	47uF/35V	SAMXON	ESK476M1VD 11TUSRP	Nichicon	UHV1V470 MDD	Rubycon	35

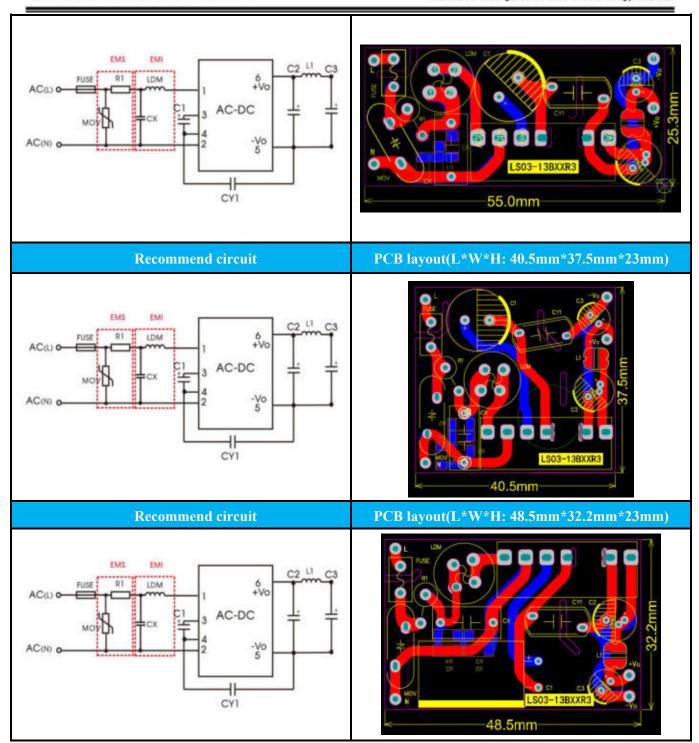
	General performance test (Test part number: LS03-13B12R3)							
NO.	Test item	Test conditions	Specification	Test result				
1	No load power consumption	I/P: 230VAC O/P: No load Ta: 25°C	≤0.15W	0.107W				
2	Output Voltage Accuracy	I/P: 85 to 305VAC O/P: 10%Io to 100%Io Ta: 25°C	±5%	1.21%				
3	Output voltage tolerance	I/P: 85 to 305VAC O/P: 10%Io to 100%Io Ta: 25℃	±1.5%	0.62%				
4	Load regulation	I/P: 85 to 305VAC O/P: 10%Io to 100%Io Ta: 25℃	±3%	1.09%				
5	Efficiency (Typ.)	I/P: 230VAC O/P: 100%Io Ta: 25°C	77%	78.45%				
6	Ripple & Noise (Max)	I/P: 85 to 305VAC	150mV	40.8mV				

Protection function test (Test part number: LS03-13B12R3) NO. **Test item Test conditions Specification** Test result 162%Io/85VAC I/P: 85VAC 172.4% Io/230VAC I/P: 230VAC 1 Over-current Protection 181.6% Io/305VAC $\geq 110\%Io$ I/P: 305VAC Hiccup mode: recovers automatically Ta:25℃ after fault condition is removed I/P: 85VAC Short circuit lasts No damage after one-hour short circuit I/P: 230VAC 2 **Short Circuit Protection** for a period is Protection mode: output hiccup, I/P: 305VAC available self-recoverable Ta:25℃

Safety test (Test part number: LS03-13B12R3)							
Test item	Test conditions	Specification	Test result				
1 Withstand voltage	I/P-O/P: last for 1 min	≥3KVAC	3.3KVAC ok,				
	leakage current<5mA		Leakage current 0.812mA				
Isolation resistance	I/P-O/P: 500VDC	>100MΩ	OK				
	Withstand voltage	Withstand voltage I/P-O/P: last for 1 min leakage current < 5mA	Withstand voltage I/P-O/P: last for 1 min leakage current < 5mA ≥3KVAC				


	EMC test (Test part number: LS03-13B12R3)							
NO.	Test item	Test conditions	Specification	Test result				
1	Surge	I/P: 230 VAC/50HZ O/P: FULL LOAD	IEC/EN61000-4-5 line to line ±2KV	PASS				

		T. 05%				
		Ta: 25℃				
		I/P: 230 VAC/50HZ				
2	EFT	O/P: FULL LOAD	IEC/ENG1000 4 4 LAVV	PASS		
2	EFI		IEC/EN61000-4-4 ±4KV	PASS		
		Ta: 25℃				
		I/P: 230 VAC/50HZ	IEC/EN61000-4-2 Contact			
3	ESD	O/P: FULL LOAD	±6KV	PASS		
		Ta: 25℃				
		I/P: 115/230 VAC@50HZ	CISPR32/EN55032			
4	CONDUCTION	O/P: FULL LOAD	CLASS A	PASS		
		Ta: 25℃	CLITOD II			
	115	VAC (L Line)	115V	AC (N Line)		
	other Limit 2 Elegator PK Class 4		other 100 Limit 1 ENGED 32 PK - State A			
	=					
	Ti		***			
	20		***************************************			
	**		10			
	014	Frequency life: 10 30		equancy time 10		
	ID Frequency Probe Cable Assets	Detector Meter Read Meas Level Limit Limit Dis QPeak 40.1 50.6 73.0 -22.4 QPeak 41.0 51.6 78.0 27.4		and Control of Control of Control		
	7 650,000klz 0.2 0.2 10.0 6 1347MHz 0.3 0.2 10.0	GPcak 34.6 45.0 71.0 20.0 C_AVG 20.8 313 60.0 48.7	3 1 149MHz 0.3 0.2 10.0 QP	_		
	5 1.143MHz 0.3 0.2 10.0 8 180 000kHz 0.2 0.2 10.0	C AVG 20.5 31.0 60.0 29.0 C_AVG 24.7 35.1 66.0 -30.0	6 183 000kHz 0.2 0.2 10.0 QP			
	2 651 000kHz 0.2 0.2 10.0 1 705,000kHz 0.2 0.2 10.0	C_AVG 177 281 600 -319 C_AVG 12.1 22.5 60.0 37.5	4 642,000kHz 0.2 0.2 10.0 C /	V/G 18.2 20.6 60.0 31.4		
	220	VAC (L Line)	1 183 050kHz 02 02 100 C_AVG 230 342 660 -318 230VAC (N Line)			
		VAC (L Line)		AC (IV LINE)		
	#86/V SE ENGROSS NV Clade A PRO 0.15	100 to	other SENSON PROCESS A. Lores S ENGLISON AV Chesto A.			
	70		75			
	60		"			
	=		-			
	20		20			
	0 10	Frequency MRE:	â 18 1 p	#(Jump) 10-(c		
	IU Frequency Probe Cable Atten.	Detector Meter Read Meas Level Limit Limit Dist.	ID Frequency Probe Cable Atten. Det	ector Meter Read Meas Level Limit Limit Dist.		
	1 116MHz 0.3 0.2 10.0 2 1.19/MHz 0.3 0.2 10.0	QPeak 45.0 55.5 73.0 -17.5 QPeak 44.8 55.0 73.0 17.7	8 1 101MHz 03 02 100 QC	Neck 418 573 730 -207 Feak 479 58.2 79.0 20.8		
	3 1.10/MHz 0.3 0.2 10.0 4 1.128MHz 0.3 0.2 10.0	QEss 44.8 55.0 73.0 17.7 QPask 44.6 55.1 73.0 -17.9	2 1143MHz 03 02 100 C_	888 41.6 52.1 73.0 20.9 AVG 24.3 34.8 50.0 -25.2		
	5 1.158MHz 0.3 0.2 10.0 6 1.185MHz 0.3 0.2 10.0 9 1.127MHz 0.2 0.0 10.0	QFeak 44.5 55.0 73.0 18.0 QFeak 44.4 54.9 73.0 -18.1 C AVC 25.4 25.0 50.0 23.4	6 158 000kHz 0.1 0.2 10.0 C_s	AVG 24.2 34.7 60.0 25.3 AVG 23.7 34.0 86.0 -32.0		
	8 1137MH2 03 02 100	C_AVG 264 36.0 60.0 -23.1	9 1848MHz 03 02 100 QF	hask 277 382 73.0 -34.8		



4.1.4. EMS (EFT: ±4KV, Surge: line to line ±2KV) and EMI (Class B)

This solution can meet all the performance in our datasheet, as well as EMS (EFT: ± 4 KV, Surge: line to line ± 2 KV) and EMI (Class B).

1) Design circuit and PCB layout are as follows:

Recommend circuit	PCB layout(L*W*H: 55.0mm*25.3mm*17mm)
-------------------	---------------------------------------

Note: There are three kinds PCB layouts are recommended for this solution. The first is for strict height requirement situations, and the second is for situations where length and width are required but the height is less limited. The third is for strict width requirement situations.

2) BOM:

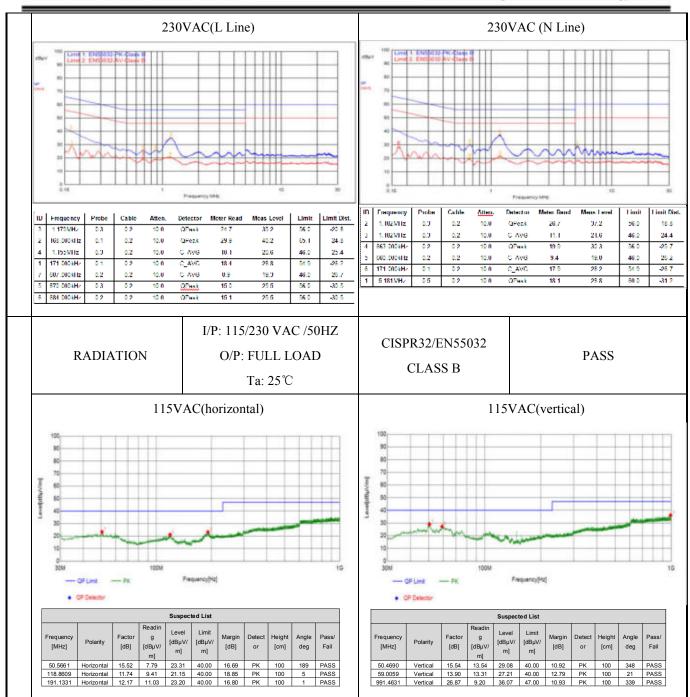
PCB position	Туре	Spec	Recommended material combination 1		Recommended material combination 2		Recommended material combination 3	
			Brand	P/N	Brand	P/N	Brand	P/N

FUSE	FUSE	2A/300VA C	Better	9321200301	Conquer	MST-2A-300 V	Littelfuse	36912000000
MOV	VARISTOR	S14K350	XINFUTE	DNR S14K350	Thinkin	TVR14561	TDK	B72214S0351
WIOV	VIIIISTOR	51416550	Anvior	DIVIC 914IC330	g	1 7111301	TDK	K101
R1	Wire-wound	12Ω/3W/Φ	PAK	NKN3WJ12RT	Vagaa	NKN3WSJT-	Vichov	RWM041012
KI	Resistor	5*15	HENG	INKINS WJ12KI	Yageo	73-12R	Vishay	R0JR15E1
CX	Class-X	0.1uF/310	Faratronic	C42Q2104K4S	НЈС	MKP-104K03	TDK	B32671Z6104
CA	Capacitor	VAC	rarationic	A405	пјС	05AT1108-PV	IDK	D320/1Z0104
LDM	Input	1.2mH/0.2	Har Chan	DV0/00 122V	W741-	7(0772122	Bourns	RLB9012-122
LDM	inductor	A	Hua Chen	PK0608-122K	Wurth	768772122	Dourns	KL
C1	Input filter	22uF/450V	CAMYON	ERD226M2WI2	G	450BXW22M	D. 1	450BXW22M
C1	capacitor	/Ф12.5*20	SAMXON	0RR4RF	Capxon	EFR18X16	Rubycon	EFR12.5X20
CY1	Class-Y	1nF/	Wassa	HIE102M	1	YU1AH102M	TDK	CD85-E2GA1
CYI	Capacitor	400VAC	Wmec	HJE102M	waisin	walsin 070BASDAH		02MYASA
G2	Output filter	270uF/16V	CAMYON	UER277M1CE0	G	UPE1C271M	NGG	RS81C271M
C2	capacitor	/Ф6.3*8	SAMXON	8TUX0CR	Capxon	NN6308	NCC	DN1
T 1	Output	4.7uH/2.2	II Cl	HCCD0403T-4	CI :1: :	BPSD000504	D	SDE0403A-4
L1	inductor	A	Hua Chen	R7M	Chilisin	324R7	Bourns	R7M
C2	Output filter	47 - F/2537	CAMYON	ESK476M1VD1	Comme	UHV1V470M	Dulance	35ZLH47MH
C3	capacitor	47uF/35V	SAMXON	1TUSRP	Capxon	DD	Rubycon	FCT15X11

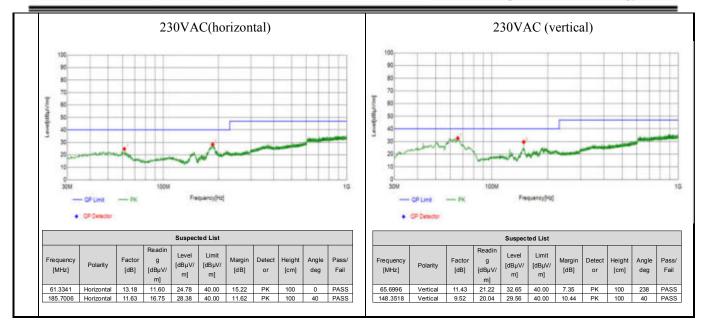
3) Test report

	General performance test(test module: LS03-13B12R3)										
NO	TEST ITEM	SPECIFICATION	SPECIFICATIO N	RESULT							
1	NO LOAD POWER CONSUMPTION	I/P: 230 VAC O/P: Min LOAD Ta: 25°C	≤0.15W	0.101W							
2	Output Voltage Accuracy	I/P: 85VAC to 305VAC O/P: Full to Min LOAD Ta:25°C	±5%	1.48%							
3	OUTPUT VOLTAGE TOLERANCE	I/P: 85VAC to 305VAC O/P: Full to Min LOAD Ta:25°C	±1.5%	0.34%							
4	LOAD REGULATION	I/P: 85VAC to 305VAC O/P: Full to Min LOAD Ta:25℃	±3%	0.87%							

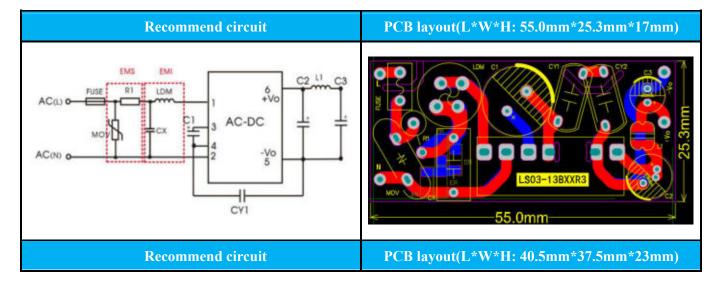
5	EFFICIENCY(Typ.)	I/P: 230 VAC O/P: Full LOAD Ta: 25°C	77%	78.03%			
	RIPPLE & NOISE(Max)	I/P: 85VAC to 305VAC O/P: Full LOAD Ta:25℃	150mV	68.50mV			
	low frequency:		high frequency:				
6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Service Services 15 Company Co	1 10 2 10 10 10 10 10 10 10 10 10 10 10 10 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

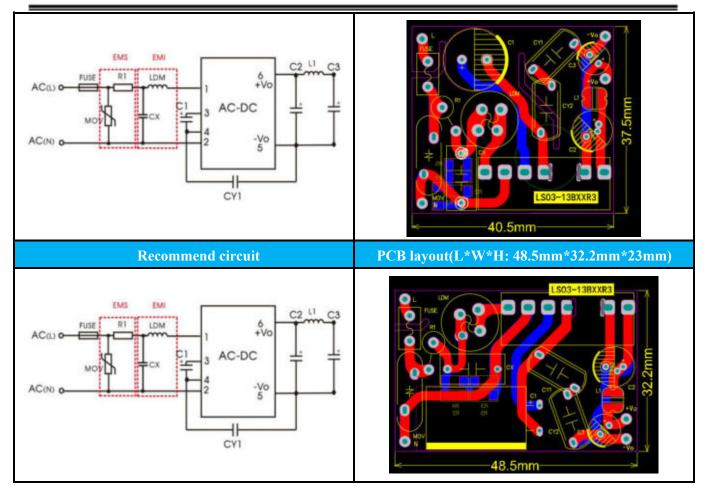

	Protection function test(test module: LS03-13B12R3)									
NO	TEST ITEM	SPECIFICATION	SPECIFICATIO N	RESULT						
1	Over-current Protection	I/P: 85VAC I/P: 230VAC I/P: 305VAC Ta: 25°C	≥110%Io	158%Io/85VAC 171.2% Io/230VAC 182.4% Io/305VAC Hiccup mode, recovers automatically after fault condition is remove						
2	Short Circuit Protection	I/P: 85VAC I/P: 230VAC I/P: 305VAC Ta: 25°C	Short output 1 hour no damage	No damage Hiccup mode, recovers automatically after fault condition is removed						

	Safety test (test module: LS03-13B12R3)									
NO	TEST ITEM	SPECIFICATION	SPECIFICATION	RESULT						
1	WITHSTAND	I/P-O/P: 3KVAC/min	>2VVAC	3.3KV ok,						
1	VOLTAGE	leakage current<5mA	≥3KVAC	leakage current:0.86mA						
2	ISOLATION	I/P-O/P: 500VDC	>100MΩ	Ok						
2	RESISTANCE	1/P-O/P. 300 VDC	>100lVI22	Ok						



		EMC test (test mod	lule: LS03-13B12R3)			
ON	TEST ITEM	SPECIFICATION	SPECIFICATION	RESULT		
1	Surge	I/P: 230 VAC/50HZ O/P: FULL LOAD Ta: 25℃	IEC/EN61000-4-5 line to line ±2KV	PASS		
2	EFT	I/P: 230 VAC/50HZ O/P: FULL LOAD Ta: 25℃	IEC/EN61000-4-4 ±4KV	PASS		
3	ESD	I/P: 230 VAC/50HZ O/P: FULL LOAD Ta: 25℃	IEC/EN61000-4-2 Contact ±6KV	PASS		
4	CONDUCTION	I/P: 115/230 VAC/50HZ O/P: FULL LOAD Ta: 25℃	CISPR32/EN55032 CLASS B	PASS		
	115	VAC (L Line)	115VA	AC (N Line)		
	#BU	Pregionicy Met 10 20	### 1	Prespectory MHE:		
		Networks Medic Result Mess Level Limit Limit Dist.	ID Frequency Probe Cable Atten.	Selector Meter-Band Mens-Level Limit Limit Dis		
	1 1158MHz 0.3 0.2 10.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C AVG 16.0 27.2 53.4 26.3 CP-sak 19.0 29.5 58.0 -26.5 C AVG 9.0 19.5 46.0 26.5 C AVG 8.6 19.1 46.0 26.9 CP-sak 15.4 25.9 58.0 -30.1 CP-sak 22.7 20.1 03.4 10.4	4 690 000kHz 0.2 0.2 10.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SESSA 20.4 30.9 56.0 25.1 C_AVC 9.8 20.2 46.0 -25.8 QPeak 19.5 29.9 56.0 26.1 C_AVG 15.7 25.1 59.4 27.4 QPeak 22.9 33.3 63.4 -30.1		




4.1.5. EMS (EFT: ±4KV, Surge: line to line ±2KV) and EMI (Class B) that meets EN60335

This solution can meet all the performance in our datasheet, as well as EMS (EFT: ± 4 KV, Surge: line to line ± 2 KV) and EMI (Class B).

1) Design circuit and PCB layout are as follows:

MORNSUN[®]

Note: There are three kinds PCB layouts are recommended for this solution. The first is for strict height requirement situations, and the second is for situations where length and width are required but the height is less limited. The third is for strict width requirement situations.

2) BOM:

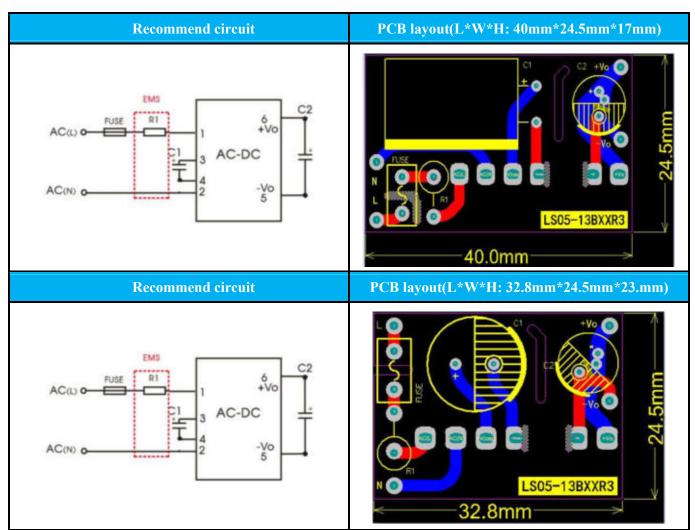
PCB Type		Spec		nded material ination 1	Recommended material combination 2		Recommended material combination 3	
position			Brand	P/N	Brand	P/N	Brand	P/N
CV1/CV2	Class-Y	1nF/	Wee	HME102	Walsin	YU1AC10	TDV	CS80-E2G
CY1/CY2	Capacitor	250VAC	Wmec	M	Walsin	2M060	TDK	A102MY

Note: The only difference between two Class-Y Capacitor and one Class-Y Capacitor in section 4.1.4 are material and PCB pin distance, test result is similar to one Class-Y Capacitor. Hence refer to section 4.1.4 for other parameters and test content besides Class-Y Capacitor.

4) Test report

Test report refer to section 4.1.4. The only difference between two Class-Y Capacitor and one Class-Y Capacitor in section 4.1.4 are material and PCB pin distance.

Note: It's fine to meet EMS (EFT: ± 2 KV, Surge: line to line ± 1 KV) for white goods standard base on EN60335, while our design is to meet EMS (EFT: ± 4 KV, Surge: line to line ± 2 KV) as customers are asking for higher level


EMS performance. If only white goods standard needed, just remove the voltage dependent resistor (MOV).

4.2. LS05-13BxxR3 series uses 12VDC output as an example to recommend solutions and data packages

4.2.1. Minimization solution (Achieve normal output function)

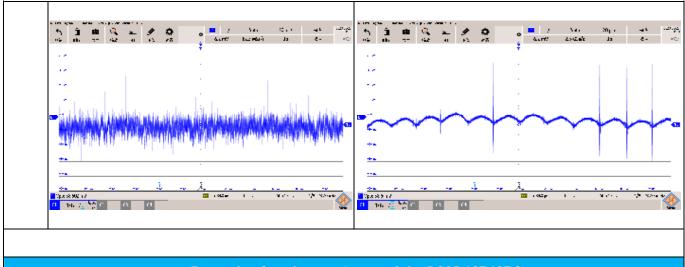
This solution can achieve normal output of power supply module, but we do not promise other performance. This solution suitable for strict cost requirements, but no performance requirements application.

1) Design circuit and PCB layout are as follows:

Note: There are two kinds PCB layouts are recommended for this solution. The first is for strict height requirement situations, and the second is for situations where length and width are required but the height is less limited.

2) BOM:

Note: We recommend three device combinations, you can choose any one.

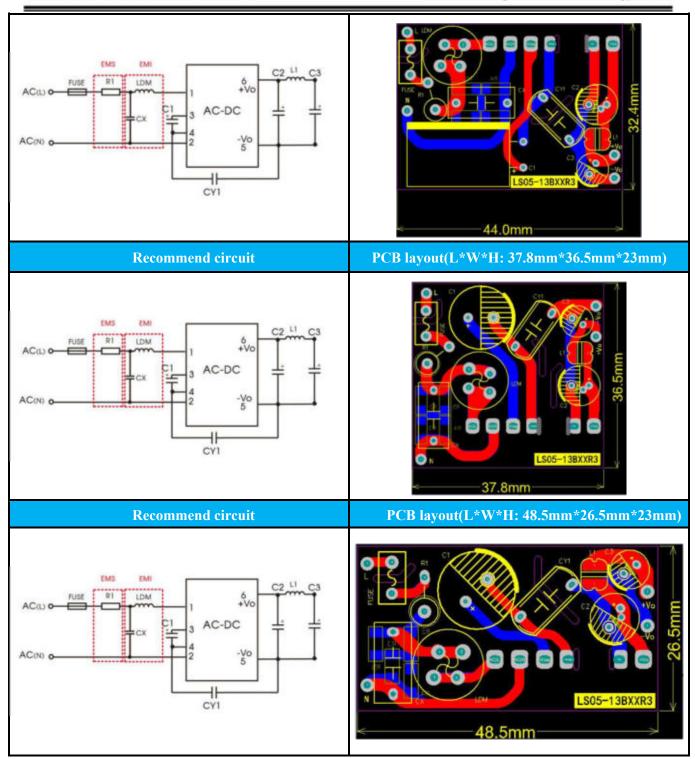


РСВ			Recommended material combination 1		Recommended material combination 2		Recommended material combination 3	
position	Туре	Spec	Brand	P/N	Brand	P/N	Brand	P/N
FUSE	FUSE	1A/300VAC	Better	9321100	Conquer	MST-1A-300V	Littelfuse	36911000000
R1	Wire-wound Resistor	12Ω/3W/Φ5*15	PAK HENG	NKN3WJ12R T	Yageo	NKN3WSJT-7 3-12R	Vishay	RWM041012R0J R15E1
C1	Input filter capacitor	22uF/450V/Φ1 2.5*20	SAMXON	ERD226M2W I20RR4RF	Rubycon	450BXW22M EFR18X16	Rubycon	450BXW22MEF R12.5X20
C2	Output filter capacitor	270uF/16V/Ф6. 3*8	SAMXON	UER277M1C E08TUX0CR	ELITE	UPE1C271MN N6308	NCC	RS81C271MDN1

3) Test report

	General performance test(test module: LS05-13B12R3)										
NO	TEST ITEM	SPECIFICATION	SPECIFICATION	RESULT							
1	NO LOAD POWER CONSUMPTION	I/P: 230VAC O/P: No load Ta:25℃	≤0.15W	0.094w							
2	I/P: 85 to 305VAC Output Voltage Accuracy O/P:10%Io to 100%Io Ta:25℃		±5%	1.25%							
3	VOLTAGE REGULATION I/P: 85 to 305VAC O/P:10%Io to 100%Io Ta:25°C		±1.5%	0.08%							
4	LOAD REGULATION	I/P: 85 to 305VAC O/P: 100%Io Ta:25℃	±3%	1.25%							
5	EFFICIENCY(Typ.)	I/P: 230VAC O/P:100%Io Ta:25℃	79%	81.14%							
6	RIPPLE & NOISE	I/P: 85 to 305VAC O/P:10%Io to 100%Io Ta:25℃	150mV	68.6mV							
	low frequency:		high frequency:								

Protection function test (test module: LS05-13B12R3)						
NO	TEST ITEM	SPECIFICATION	SPECIFICATION	RESULT		
1	Over-current Protection	I/P: 85VAC I/P: 230VAC I/P: 305VAC Ta:25°C	≥110%Io	132%Io/ 85VAC 131%Io/ 230VAC 138%Io/300VAC Hiccup mode, recovers automatically after fault condition is removed		
2	Short Circuit Protection	I/P: 85VAC I/P: 230VAC I/P: 305VAC Ta:25°C	Short output 1 hour no damage	No damage Hiccup mode, recovers automatically after fault condition is removed		


Safety test(test module: LS05-13B12R3)						
NO	TEST ITEM	SPECIFICATION	SPECIFICATION	RESULT		
1	WITHSTAND	I/P-O/P: 3KVAC/min	≥3.6KVAC	3.6KVAC ok,		
	VOLTAGE	leakage current<5mA		leakage current: 0.812mA		
2	ISOLATION	I/P-O/P: 500VDC	$>$ 100M Ω	OK		
	RESISTANCE					

4.2.2. EMS (EFT: ±2KV, Surge: line to line ±1KV) and EMI (Class B)

This solution can meet all the performance in our datasheet, as well a EMS (EFT: ± 2 KV, Surge: line to line ± 1 KV) and EMI (Class B).

1) Design circuit and PCB layout are as follows:

Recommend circuit	PCB layout(L*W*H: 44.0mm*32.4mm*17mm)
-------------------	---------------------------------------

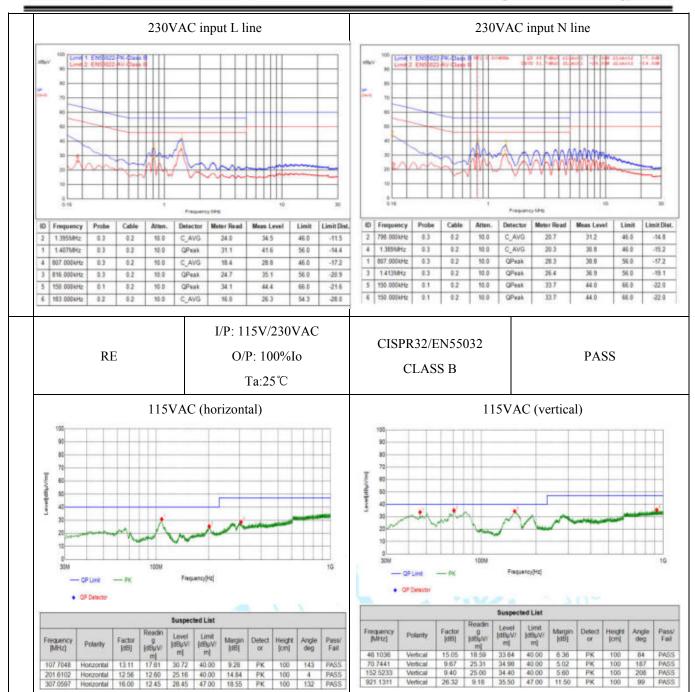
Note: There are three kinds PCB layouts are recommended for this solution. The first is for strict height requirement situations, and the second is for situations where length and width are required but the height is less limited. The third is for strict width requirement situations.

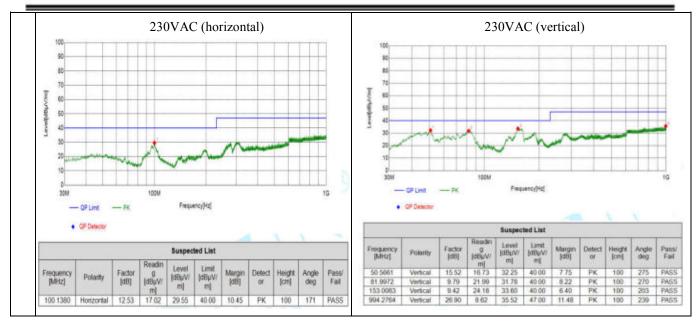
PCB	Truns		Recommo	ended material	Reco	ommended	Recomn	nended material
position	Type	Spec	Brand	P/N	Brand	P/N	Brand	P/N

广州金升阳科技有限公司 MORNSUN Guangzhou Science & Technology Co., Ltd.

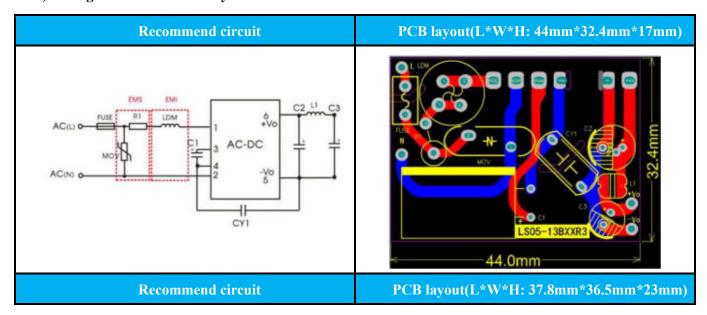
3) Test report	FUSE	FUSE	1A/300VAC	Better	9321100	Conquer	MST-1A-300V	Littelfuse	
	R1	Wire-wou nd Resistor		PAK HENG	NKN3WJ12RT	Yageo	NKN3WSJT-73 -12R	Vishay	RV
	CX	Class-X Capacitor	0.1uF/310VA C	Faratronic	C42Q2104K4S A405	НЈС	MKP-104K030 5AT1108-PV	TDK	
	LDM	Input inductor	4.7mH/0.2A	Codaca	PK0810-472K	Wurth	768772122	Bourns	R
	C1	Input filter capacitor	22uF/450V/Φ 12.5*20	SAMXON	ERD226M2WI2 0RR4RF	Rubycon	450BXW22ME FR18X16	Rubycon	45
	CY1	Class-Y Capacitor	1nF/ 400VAC	Wmec	HJE102M	Walsin	YU1AH102M0 70BASDAH	TDK	Cl
	C2	Output filter	270uF/16V/Ф 6.3*8	SAMXON	UER277M1CE0 8TUX0CR	ELITE	UPE1C271MN N6308	NCC	R
	L1	Output inductor	4.7uH/2.2A	Hua Chen	HCCD0403T-4 R7M	Chilisin	BPSD00050432 4R7	Bourns	Sl
	С3	Output filter	47uF/35V	SAMXON	ESK476M1VD1 1TUSRP	Nichicon	UHV1V470MD D	Rubycon	35

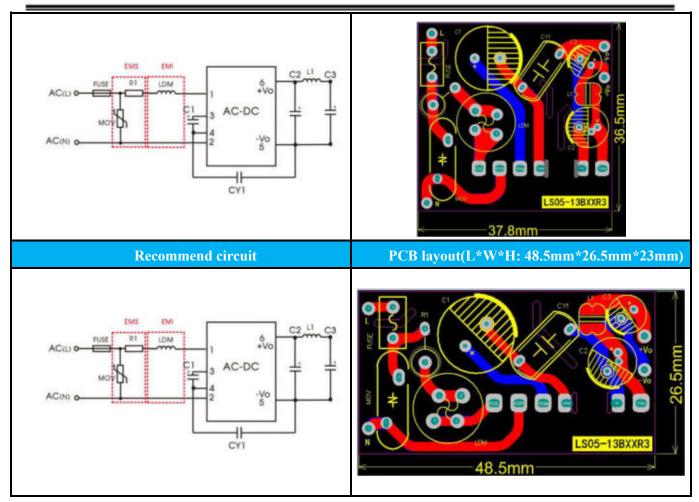
	Ge	neral performance test ((test module: LS05-13B12	2R3)
NO.	Test Item	Test Condition	Specification	Result
1	NO LOAD POWER CONSUMPTION	I/P: 230VAC O/P: No load Ta:25℃	≤0.15W	0.103W
2	Output Voltage Accuracy	I/P: 85 to 305VAC O/P: 10%Io to 100%Io Ta:25℃	±5%	1.08%
3	OUTPUT VOLTAGE TOLERANCE	I/P: 85 to 305VAC O/P: 100%Io Ta:25℃	±1.5%	-0.08%
4	LOAD REGULATION	I/P: 85 to 305VAC O/P: 10%Io to 100%Io Ta:25℃	±3%	1.17%
5	EFFICIENCY(Typ.)	I/P: 230VAC O/P: 100%Io Ta:25℃	79%	80.62%


	RIPPLE & NOISE(Max)	I/P: 85 to 305VAC O/P: 10%Io to 100%Io Ta:25℃	150mV		74mV	
	low frequency: :		high frequency:			
	10 (20 May 10 17) (20 May 10 M	dert territi is de in	ty in the ty of E	<u> </u>	dert double to de de	
6		المارين والمارين والمارين				
				$\overline{}$		
	1 14. 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Section 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1 16 2 48 C R G	· ·	Marketing 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
		Protection function test(te	est module: LS05-1	3B12R3		
NO.	Test Item	Test Condition	Specification		Result	
1	Over-current Protection	I/P: 85VAC I/P: 230VAC I/P: 305VAC Ta:25°C	≥110%Io		132%Io/ 85VAC 131%Io/ 230VAC 138%Io/300VAC tection mode: output hiccup, self-recovery	
2	Short Circuit Protection	I/P: 85VAC I/P: 230VAC I/P: 305VAC Ta:25°C	Long short circuit		age after one hour short circuit ection mode: output hiccup, self-recoverable	
		Safety test(test mod	lule: LS05-13B12R	23)		
NO.	Test Item	Test Condition	Specification	n	Result	
1	WITHSTAND VOLTAGE	I/P-O/P: test time 1 minute, leakage current < 5mA	≥3.6KVAC		3.6KV ok, leakage current=0.812mA	
2	ISOLATION RESISTANCE	I/P-O/P: 500VDC	>100MΩ		OK	
_						
		EMC Test(Test mo	dule: LS05-13B12F	R3)		
NO	Test Item	Test Condition	Specification		Result	



1			surş	ge				P: 230V D/P: 100 Ta:25°	%Io		IEC	C/EN610	000-4- ±1K		e to li	ne		PASS	}	
2			EF	Т			I/P: 230VAC O/P: 100%Io Ta:25℃			II	IEC/EN61000-4-4 ±2KV			,		PASS				
3			ES	D				P: 230V D/P: 100 Ta:25°	%Io		IEC	C/EN61	000-4 ±6K		Conta	ct		PASS	,	
4			CI	Ξ				115V/2 D/P: 100 Ta:25°	%Io	.C		CISPF	R32/E CLASS		132			PASS	\$	
					115	VAC	input L	line							115	VAC i	nput N	line		
	ethyl Park	100 Lored 2 80 80 50 50 50 50 50 50 50 50 50 50 50 50 50	1 516 622 2 516 622	NV Ques		France	ng Ure	15		30	oritoria.	100 Lored 2 90 Lored 2 80 80 80 80 80 80 80 80 80 80 80 80 80 8	ENSIGN	Av Class I		Prepare	27 14 1880 12 15 15 15 15 15 15 15 15 15 15 15 15 15	10	Silved Silved	11,140
	-	Frequency	Probe	Cuble	Atten.	Detector	Meter Read	Moss Level	Limit	Limit Dist.	ID	Frequency	Probe	Cable	Arten.	Detector	Meter Read	Meas Level	Limit	Limit Dist.
	-	714 000kHz	0.2	0.2	10.0	C_AVG	16.2	26.7	46.0	-19.3	2	714-000kHz	0.2	0.2	10.0	C_AVG	19:3	29.8	46.0	-16.2
	2 6	1.332MHz	9.3	0.2	10.0	C_AVG	15.2	25.7 25.3	46.0	20.3	4	7.507.17	0.3	0.2	10.0	C_AVG	18.2	28.6	46.0	-17.4
	0	807.000kHz 1.323MHz	03	0.2	10.0	C_AVG QPeak	23.4	33.9	56.0	-20.7 -22.1	1	720.000kHz	0.2	0.2	10.0	QPeak	26.3	36.7	56.0	-19.3
		1 SECTION 16	1000	2.00		1000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1000	27700	3	752 000kHz	0.3	0.2	10.0	QPeak.	24.2	34.7	56.0	-21.3
	3	717.000kHz	9.2	0.2	10.0	QPaak.	22.3	32.7	56.0	-23.3	5	153 000 kHz	0.1	0.2	10.0	QPeak	24.7	35.0	65.8	-30.8



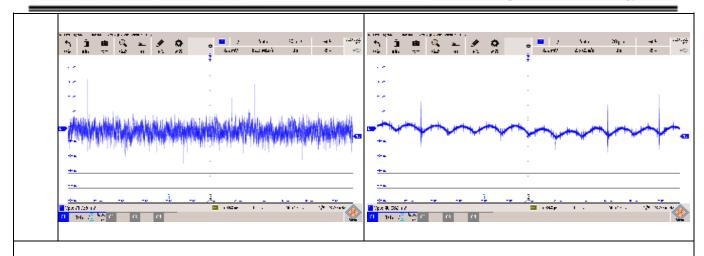


4.2.3. EMS (EFT: ±4KV, Surge: line to line ±2KV) and EMI (Class A)

This solution can meet all the performance in our datasheet, as well as EMS (EFT: ± 4 KV, Surge: line to line ± 2 KV) and EMI (Class A).

1) Design circuit and PCB layout are as follows:

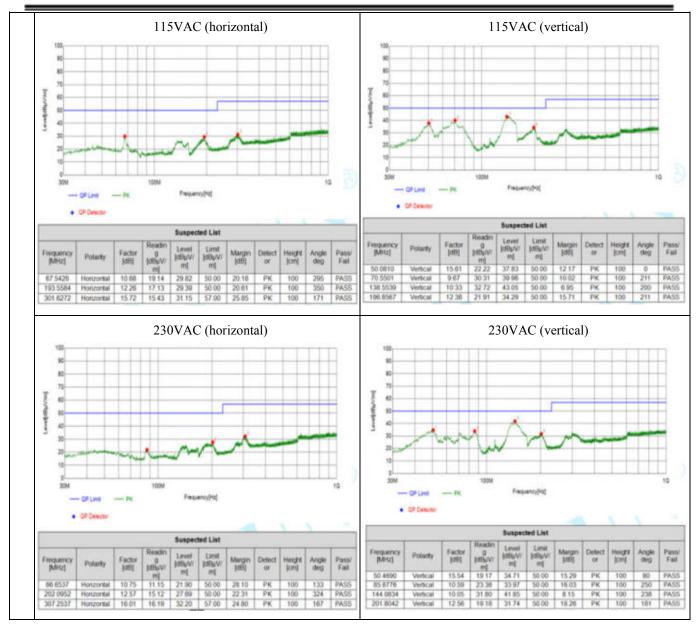
Note: There are three kinds PCB layouts are recommended for this solution. The first is for strict height requirement situations, and the second is for situations where length and width are required but the height is less limited. The third is strict for width requirement situations.


PCB	T	Smaa	Recommended material		Recomme	ended material	Recommended material		
position	Туре	Spec	Brand	P/N	Brand	P/N	Brand	P/N	
FUSE	FUSE	2A/300VA C	Better	9321200301	Conquer	MST-2A-300V	Littelfuse	36912000000	
MOV	VARISTOR	S14K350	DNR	DNR S14K350	Thinking	TVR14561	TDK	B72214S0351K101	
R1	Wire-wound Resistor	12Ω/3W/Φ5 *15	PAK HENG	NKN3WJ12RT	Yageo	NKN3WSJT-7 3-12R	Vishay	RWM041012R0JR15 E1	
LDM	input inductor	4.7mH/0.2A	Codaca	PK0810-472K	Wurth	768772122	Bourns	RLB1014-472KL	

2) Test Report:	C1	Input filter capacitor	22uF/450V/ Φ12.5*20	SAMX ON	ERD226M2WI20 RR4RF	Rubycon	450BXW22M EFR18X16	Rubycon	450
	CY1	Class-Y Capacitor	1nF/ 400VAC	Wmec	HJE102M	walsin	YU1AH102M 070BASDAH	TDK	CD
	C2	Output filter capacitor	270uF/16V/ Ф6.3*8	SAMX ON	UER277M1CE08 TUX0CR	ELITE	UPE1C271M NN6308	NCC	R
	L1	Output inductor	4.7uH/2.2A	Hua Chen	HCCD0403T-4R7 M	chilisin	BPSD0005043 24R7	Bourns	SI
	С3	Output filter capacitor	47uF/35V	SAMX ON	ESK476M1VD11 TUSRP	Nichicon	UHV1V470M DD	Rubycon	352

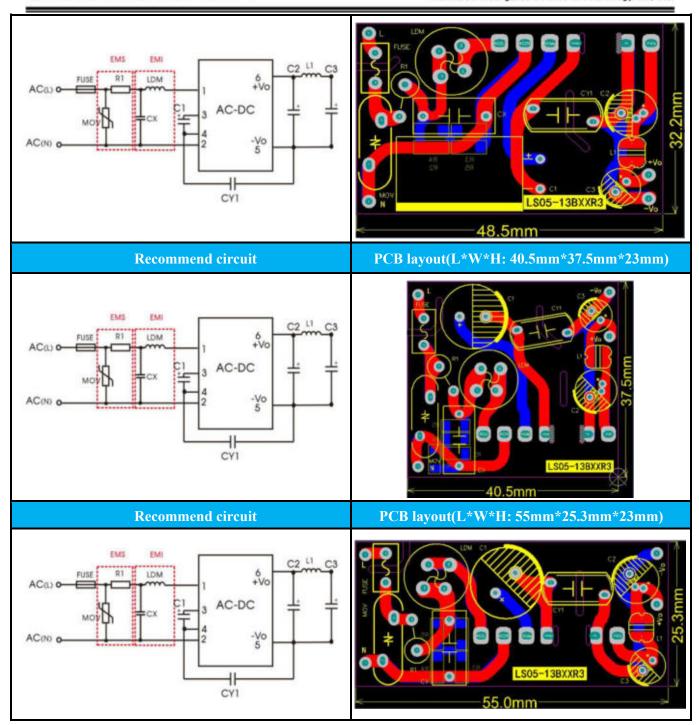
		cupacitor		
		General performance test(test module: LS05-13B1	2R3)
NO.	Test Item	Test Condition	Specification	Result
1	NO LOAD POWER CONSUMPTION	I/P: 230VAC O/P: No load Ta: 25°C	≤0.15W	0.134W
2	Output Voltage Accuracy	I/P: 85 to 305VAC O/P: 10%Io to 100%Io Ta: 25°C	±5%	-2.00%
3	OUTPUT VOLTAGE TOLERANCE	I/P: 85 to 305VAC O/P: 100%Io Ta: 25°C	±1.5%	-0.08%
4	LOAD REGULATION	I/P: 85 to 305VAC O/P: 10%Io to 100%Io Ta: 25°C	±3%	1.60%
5	EFFICIENCY(Typ.)	I/P: 230VAC O/P: 100%Io Ta: 25°C	79%	80.45%
6	RIPPLE & NOISE(Max)	I/P: 85 to 305VAC O/P: 10%Io to 100%Io Ta: 25°C	150mV	71.7mV
	low frequency:		high frequency:	

		Protection function test(te	st module: LS05-13B12	2R3)
NO.	Test Item	Test Condition	Specification	Result
1	Over-current Protection	I/P: 85VAC I/P: 230VAC I/P: 305VAC Ta: 25°C	≥110%Io	142%Io/ 264VAC 150%Io/ 230VAC 142%Io/88VAC Protection mode: output hiccup, self-recovery
2	Short Circuit Protection	I/P: 85VAC I/P: 230VAC I/P: 305VAC Ta: 25°C	Long short circuit	No damage after one hour short circuit Protection mode: output hiccup, self-recoverable


Safety test(test module: LS05-13B12R3)			
Test Condition Specification Result	Test Condition	Test Item	NO.
y/P: Test time 1 minute, ≥3.6KVAC 3.6KV ok,	I/P-O/P: Test time 1 minute,	WITHSTAND	1
	leakage current<5mA	VOLTAGE	1
V/D O/D, 500V/DC	I/D O/D, 500VDC	ISOLATION	2
I/P-O/P: 500 VDC >100 M Ω	1/P-O/P: 300 V DC	RESISTANCE	2
I/P-O/P: 500VDC >10	I/P-O/P: 500VDC		2

	EMC test(test module: LS05-13B12R3)										
NO	Test Item	Test Condition	Specification	Result							
1	surge	I/P: 230VAC O/P: 100%Io Ta: 25℃	IEC/EN61000-4-5 line to line ±2KV	PASS							

-							
2	EFT	I/P: 230VAC O/P: 100%Io	IEC/EN61000-4-4 ±4KV	PASS			
		Ta: 25℃					
		I/P: 230VAC	IEC/EN61000-4-2				
3	ESD	O/P: 100%Io	Contact ±6KV	PASS			
		Ta: 25℃	Contact ±0K v				
		I/P: 115V/230VAC	CISPR32/EN55032				
4	CE	O/P: 100%Io		PASS			
		Ta: 25℃	CLASS A				
	115	VAC (L Line)	115	VAC (N Line)			
	100 Limit 1 E103-022-19. 40-abi A Limit 2 E173-022-19. 40-abi A Limit 2 E173-02-19. 40	Presidency 104	25b.) 25 ERIS 2022 N. Clark A				
	1 153.000kHz 0.2 10.0 0	etector Meter Read Meas Level Limit Limit Dist. Peak 49.0 59.2 79.0 -19.8	1 153 000kHz 0.2 10.0	Netector Meter Read Meas Level Limit Limit Dist. GPeak 48.7 58.9 79.0 -20.1			
		AVG 262 364 60.0 -23.6 AVG 29.1 39.3 66.0 -26.7		QPeak 36.2 46.4 73.0 26.6 C_AVG 29.1 39.3 66.0 -26.7			
	The state of the s	Peak 412 51.4 79.0 -27.6 AVG 20.2 30.4 60.0 -29.6		C_AVG 22.8 33.0 60.0 27.0 QPeak 39.2 49.4 79.0 29.6			
	And the second s	Peak 30.4 40.6 73.0 -32.4		C_AVG 23.8 34.0 66.0 -32.0			
	230	VAC (L Line)	230VAC (N Line)				
	### 100 Limit 1 E192032279 E194 A	Figures Mtt	### 100 Limit 1: ENNOSCE PM Class A Limit 2: ENNOSCE PM Cl	Manage life Trequency life 30			
	1 153.0034Hz 0.2 10.0 0 3 550.0034Hz 0.2 10.0 0 4 550.0034Hz 0.2 10.0 0 2 150.0034Hz 0.2 10.0 0 5 804.0034Hz 0.2 10.0 0	Peak 54.7 64.9 79.9 .44.1 2Peak 54.7 64.9 79.9 .44.1 2Peak 38.0 48.2 73.0 -24.8 2Peak 38.0 48.2 73.0 -24.8 2Peak 32.0 42.2 73.0 38.8 2Peak 32.0 42.2 73.0 38.8 2Peak 32.0 42.2 73.0 38.8	1 159.008Hz 0.2 10.0 4 555.008Hz 0.2 10.0 3 300.008Hz 0.2 10.0 5 804.008Hz 0.2 10.0 6 610.008Hz 0.2 10.0	Meter Read Meos Level Limit Limit Dist. QPeak 55.9 65.2 79.0 -13.8 C_AVG 29.2 38.4 60.0 -21.6 QPeak 46.9 57.1 79.0 -21.9 QPeak 38.3 48.5 73.0 -24.5 C_AVG 23.9 33.2 60.0 -26.8 C_AVG 25.7 36.9 66.0 -29.1			
	RADIATION	I/P: 115V/230VAC O/P: 100%Io Ta: 25°C	CISPR32/EN55032 CLASS A	PASS			



4.2.4. EMS (EFT: ±4KV, Surge: line to line ±2KV) and EMI (Class B)

This solution can meet all the performance in our datasheet, as well as EMS (EFT: ± 4 KV, Surge: line to line ± 2 KV) and EMI (Class B).

1) Design circuit and PCB layout are as follows:

Recommend circuit PCB	layout(L*W*H: 48.5mm*32.2mm*17mm)
-----------------------	-----------------------------------

Note: There are three kinds PCB layouts are recommended for this solution. The first is for strict height requirement situations, and the second is for situations where length and width are required but the height is less limited. The third is for strict width requirement situations.

PCB	Type	Space	Recom	mended	Recommo	ended material	Recommended material		
position	Туре	Spec	Brand	P/N	Brand	P/N	Brand	P/N	

广州金升阳科技有限公司 MORNSUN Guangzhou Science & Technology Co., Ltd.

3) Test report

FUSE	FUSE	2A/300VAC	Better	9321200301	Conquer	MST-2A-300V	Littelfuse
MOV	VARISTOR	S14K350	DNR	DNR S14K350	Thinking	TVR14561	TDK 1
R1	Wire-wound Resistor	12Ω/3W/Φ5*1 5	PAK HENG	NKN3WJ12 RT	Yageo	NKN3WSJT-73- 12R	Vishay
CX	Class-X Capacitor	0.1uF/310VAC	Faratronic	C42Q2104K 4SA405	HuaJung	MKP-104K0305 AT1108-PV	TDK
LDM	Input inductor	4.7mH/0.2A	Codaca	PK0810-472 K	Wurth	768772122	Bourns
C1	Input filter capacitor	22uF/450V/Φ1 2.5*20	SAMXON	ERD226M2 WI20RR4RF	Rubycon	450BXW22MEF R18X16	Rubycon
CY1	Class-Y Capacitor	1nF/ 400VAC	SAMXON	HJE102M	Walsin	YU1AH102M07 0BASDAH	TDK
C2	Output filter capacitor	270uF/16V/Ф6 .3*8	SAMXON	UER277M1 CE08TUX0C R	ELITE	UPE1C271MNN 6308	NCC
L1	Output inductor	4.7uH/2.2A	Hua Chen	HCCD0403T -4R7M	Chilisin	BPSD000504324 R7	Bourns
С3	Output filter capacitor	47uF/35V	SAMXON	ESK476M1V D11TUSRP	Nichicon	UHV1V470MD D	Rubycon

	General Performance Test(Part# LS05-13B12R3)										
No.	Test Item	Test Condition	Specification	Test Result							
	No-load power consumption	Input: 230VAC									
1		Output: No load	≤0.15W	0.135W							
		Temp.: 25℃									
		Input: 85 to 305VAC									
2	Output Voltage Accuracy	Output: 10%Io to 100%Io	±5%	-1.67%							
		Temp.: 25℃									
3	Line Regulation	Input: 85 to 305VAC	±1.5%	0.08%							

		Output: 100%Io		
		Temp.: 25°C		
		Input: 85 to 305VAC		
4	Load Regulation	Output: 10%Io to 100%Io	±3%	1.52%
		Temp.: 25℃		2.0 270
		Input: 230VAC		
5	Efficiency	Output: 100%Io	79%	80.34%
	Efficiency	Temp.: 25℃	7,7,0	00.5470
		Input: 85 to 305VAC		
	Ripple & Noise	Output: 10%Io to 100%Io	150mV	68.6mV
	Kippie & Noise	Temp.: 25°C	130m v	00.0III v
	I am for an an an airealar	10mp 25 C	III ah Gaassaa ay ahaala	
	Low frequency ripple:		High frequency ripple	:
	5 B G = 2 B	a j Man Cont again	5 j & & _	Service Control of the Control of th
6	100 mp 24 mp 10 Ng 10	T GARDY COMMAND IS CO.		AN STATE IN C.
	Charles and	diele and balance		:
	WANTE WATER TO THE TOTAL PROPERTY.			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	*** ***	akan kalendari kata a kalandari da kata a a	** **	
		·	trans	
	1 10 1 1 C C C	TO COME TO A MINE OF MANAGEMENT	1 10 12 10 10 10 10 10 10 10 10 10 10 10 10 10	TO COMP 1 . Mark . The Mark &
		D (1 T) (D	ULL CON JORGANA	
		Protection Test(Part	<u> </u>	
No.	Test Item	Test Condition	Specification	Test Result
		Input: 85VAC		132%Io/ 85VAC
1	Over-current Protection	Input: 230VAC	≥110%Io	131%Io/ 230VAC
		Input: 305VAC	_110/010	138%Io/300VAC
		Temp.: 25 °C		Mode: Hiccup, self-recovery
		Input: 85VAC		Chart aircuit for and bear with a
	Chart Cinoxit Danta di	Input: 230VAC	continuous,	Short circuit for one hour without
2	Short Circuit Protection	Input: 305VAC	self-recovery	damage
		Temp.: 25 ℃		Mode: Hiccup, self-recovery
	•		•	
		Safety Test(Part#	LS05-13B12R3)	
No.	Test Item	Test Condition	Specification	Test Result
	1		1	i .

-	MONIA	,011				MORNSUN Guangzhou Science & Technology Co., Ltd.									
1	Isolation Voltage	Input-Ou leakag	tput, Te				≥3.6	KVA	С		leaka	3.6KVAC ok, leakage current: 0.812mA			_
2	Insulation resistance	Input-	Output,	500V	DC		>1	00M0)			()K		
										•					
			EMC	Test	(Part#	LS	05-131	312R	3)						
No.	Test Item	Tes	st Cond	ition			Spe	cific	ation			Tes	st Resul	t	
1	Surge	Out	out: 230V tput: 100 emp.: 25	%Io		IEC/EN61000-4-5				ine to			PASS		
2	EFT	Out	out: 230 V tput: 100 emp.: 25	%Io		IEC/EN61000-4-4 ±4KV			PASS						
3	ESD	Out	out: 230 V tput: 100 emp.: 25	%Io		IEC/EN61000-4-2 Contact ±6KV				PASS					
4	СЕ	Out	115V/2: tput: 100 emp.: 25	%Io	.C		CISPR	32/E LASS		32	PASS				
	115	VAC Input L	line							115V	/AC In	put N l	ine		
	25 0 0 0 16	Piedosney Mrs.		•	30		100 Lind 3 80 80 80 80 80 80 80 80 80 80 80 80 80 8	ENOUGH	PK Cass	Mm	Frequenc				36
	10 Frequency Probe Cable Atten.	Detector Meter Read QPeak 27.6 C_AVG 16.6 QPeak 25.6	Meas Level 37.8 26.8 35.8	56.3 46.0 56.0	-18.5 -19.2 -20.2	1 4 3	726 000kHz 726 000kHz 720 000kHz	Probe	0.2 0.2 0.2	90.0 10.0 10.0	Oetector QPeak C_AVG QPeak	34.6 14.3 23.9	Meas Level 44.8 24.5 34.1	66.0 46.0 56.0	21.2 21.5 -21.9

1 150.000kHz

6 153.000kHz

150.000kHz

0.2

0.2

0.2

10.0

10.0

10.0

QPeak

QPeak.

C_AVG

34.8

34.8

20.2

45.0

45.0

30.4

66.0

66.0

55.8

-21.0

-21.0

-25.5

5 810.000kHz

6 616.000kHz

153.000kHz

0.2

0.2

0.2

10.0

10.0

10.0

QPeak

C_AVG

C_AVG

21.6

21.1

11.1

32.0

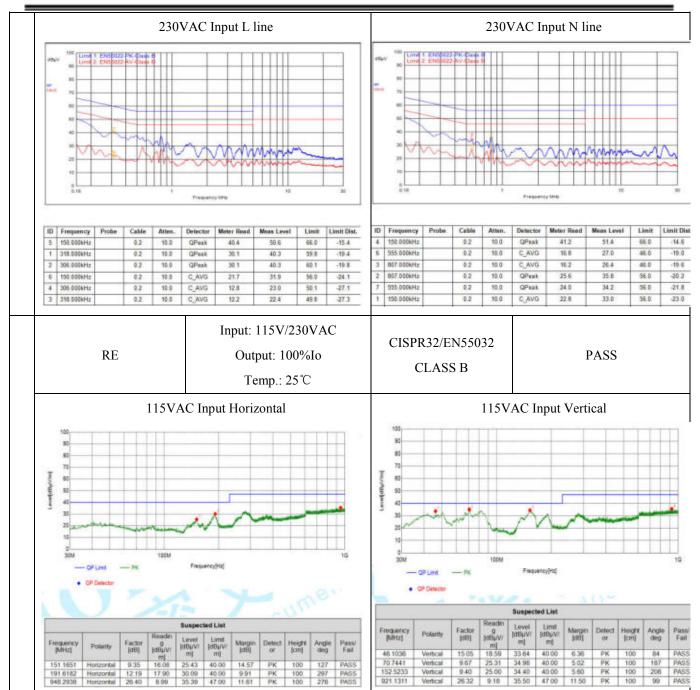
21.2

21.3

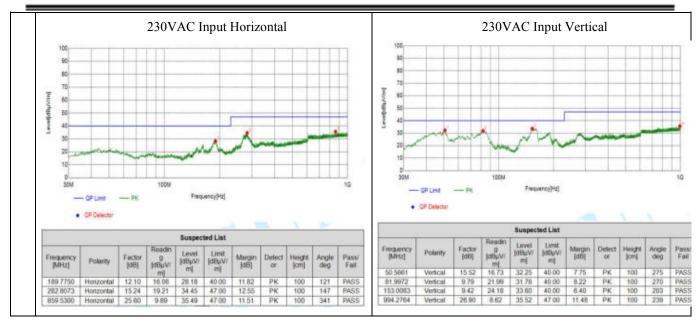
56.0

55.8

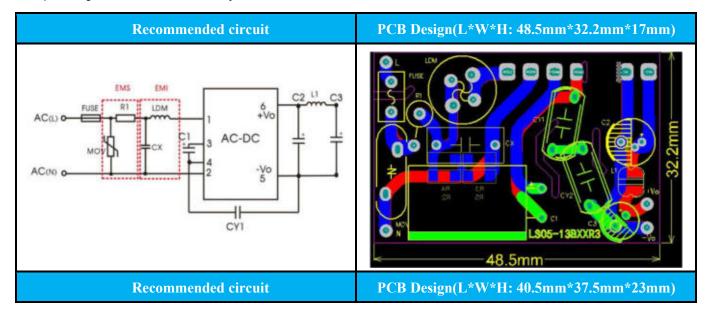
46.0

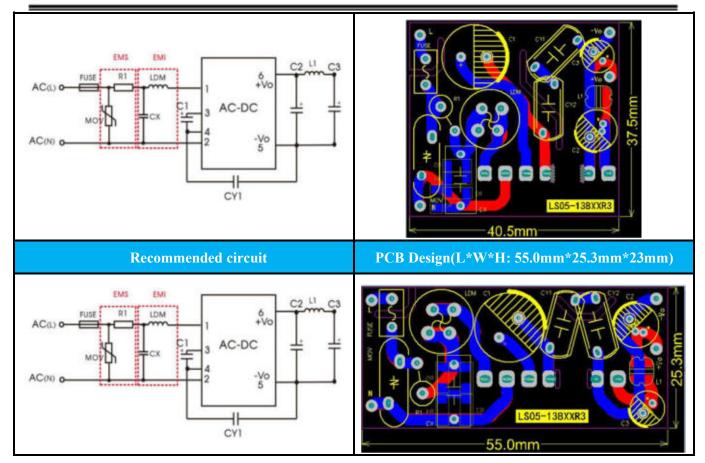

24.0

24.5


-24.7

广州金升阳科技有限公司 MORNSUN Guangzhou Science & Technology Co., Ltd.





4.2.5. EMS (EFT: ±4KV, Surge: line to line ±2KV) and EMI (Class B), meets EN60335 standard

The solution can meet the conventional performance in the datasheet, and meet EMS (EFT: ± 4 KV, Surge: line to line ± 2 KV) and EMI (Class B).

1) Peripheral circuits, PCB layout and recommended materials are as follows:

Note: There are three PCB layouts are recommended. The first one is to meet the strict height requirements, the second one is to meet the strict length and width requirements, and the third one is to meet the strict width requirements.

2) **BOM**:

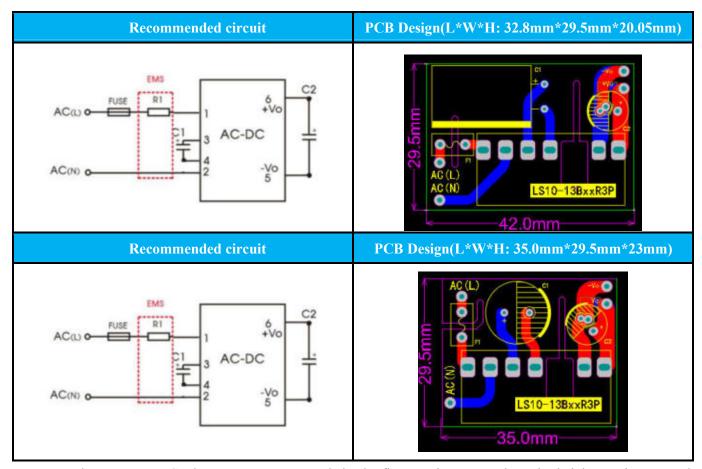
РСВ	1	2		ended material				ended material
nosition	position Type Sp		com	oination 1	comb	oination 2	combination 3	
position			Brand	P/N	Brand	P/N	Brand	P/N
CY1/CY	V2	1nF/	Wassa	HME102M	Walsin	YU1AC102M	TDV	CS80-E2GA10
2	Y2-cap	250VAC	Wmec	HME102M	Walsin	060	TDK	2MY

Note: The two Y-capacitor solution is different from the single Y-capacitor solution in section 4.2.4 only in terms of Y-capacitor material and PCB foot spacing, and the test results are not much different, so please **refer to section 4.2.4 for other device parameters and related test contents in addition to Y-capacitor in the recommended BOM.**

3) Test Report:

The two Y-capacitor solution is different from the single Y-capacitor solution in section 4.2.4 only in terms of Y-capacitor material and PCB foot spacing, and the test results are not much different, so please refer to the test report in section 4.2.4 for test result.

Note: According to EN60335 standard requirements for white goods to meet EMS (EFT: ± 2 KV, Surge: line to line ± 1 KV) will be OK, but because many customers currently require a higher level of EMS, so this solution is


designed for EMS (EFT: ± 4 KV, Surge: line to line ± 2 KV). If you only need to meet the white goods requirements then remove the varistor (MOV).

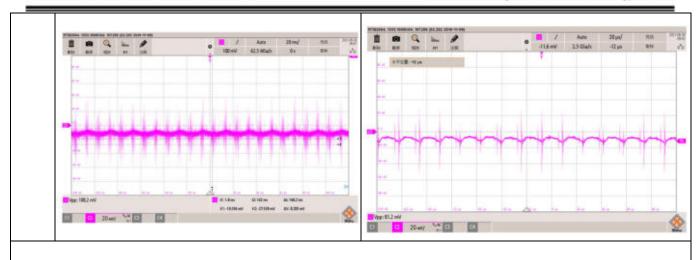
4.3. LS10-13BxxR3P series uses 12VDC output as an example to recommend solutions and data packages

4.3.1. Minimization solution (Achieve normal output function)

This solution can achieve normal power output, but we do not promise other performance indicators. Suitable for occasions with extremely high cost requirements but low performance requirements;

1) Peripheral circuits, PCB layout and recommended materials are as follows:

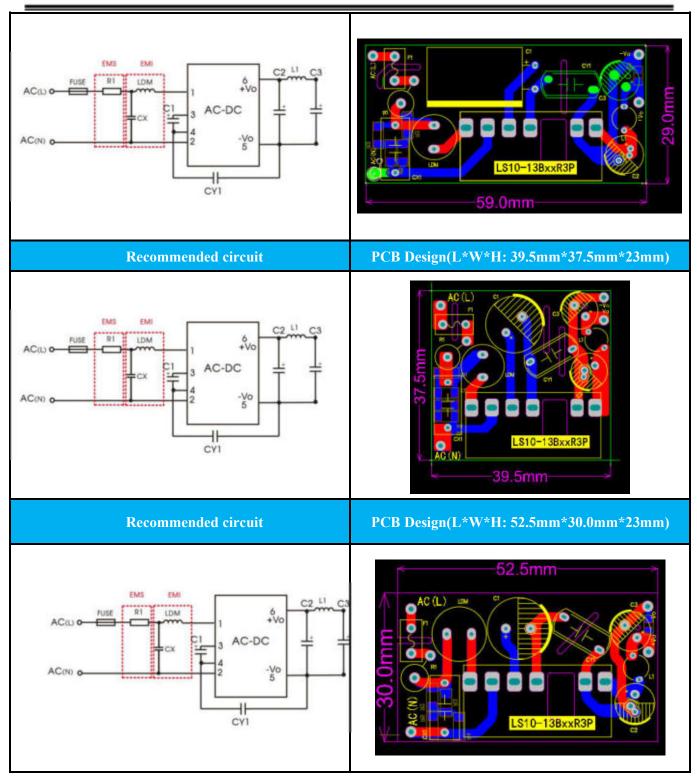
Note: There are two PCB layouts are recommended. The first one is to meet the strict height requirements, the second one is to meet the strict length and width requirements.


	PCB Type	Spec		ended material bination 1		nded material	Recommended material combination 3		
positio			Brand	P/N	Brand	P/N	Brand	P/N	

Note: Three different brands of materials were recommended, and it is possible to choose any one brand. 3) Test report	FUSE	FUSE	1A/300VAC	Better	9321100	Conquer	MST-1A-300V	Littelfuse	
	R1	Wire-woun d Resistor	6.8Ω/3W	PAK HENG	NKN03BJ6R8	Yageo	NKN3WSFR-7 3-6R8	Vishay	A
	C1	Input filter capacitor	22uF/450V	SAMXO N	ERD226M2WI 20RR4RF	Rubycon	450BXW22ME FR18X16	Rubycon	45
	C2	Output filter capacitor	470uF/16V/Φ8 *11	SAMXO N	UER477M1CF 1ATVX0CR	ELITE	UPE1C471MN N0811	NCC	AF

		capacitor		
		General Performance To	est(Part# LS10-13B12R3P)	
No.	Test Item	Test Condition	Specification	Test Result
1	No-load power consumption	Input: 230VAC Output: No load Temp.: 25℃	≤0.15W	0.12W
2	Output Voltage Accuracy	Input: 85 to 305VAC Output: 10%Io to 100%Io Temp.: 25°C	±5%	1.16%
3	Line Regulation	Input: 85 to 305VAC Output: 100%Io Temp.: 25℃	±1.5%	0.16%
4	Load Regulation	Input: 85 to 305VAC Output: 10%Io to 100%Io Temp.: 25°C	±1.5%	0.17%
5	Efficiency	Input: 230VAC Output: 100%Io Temp.: 25°C	81%	84.02%
6	Ripple & Noise	Input: 85 to 305VAC Output: 10%Io to 100%Io Temp.: 25°C	150mV	108mV
	Low frequency ripple:		High frequency ripple:	

		Protection Test(Par	rt# LS10-13B12R3P)	
No.	Test Item	Test Condition	Specification	Test Result
1	Over-current Protection	Input: 85VAC Input: 230VAC Input: 305VAC Temp.: 25°C	≥110%Io	122%Io/85VAC 123%Io /230VAC 124%Io A/305VAC
2	Short Circuit Protection	Input: 85VAC Input: 230VAC Input: 305VAC Temp.: 25°C	continuous, self-recovery	Short circuit for one hour without damage Mode: Hiccup, self-recovery


	Safety Test(Part# LS10-13B12R3P)										
No.	Test Item	Test Condition	Specification	Test Result							
1	Isolation Voltage	Input-Output, Test for 1min., leakage current<5mA	≥3.6KVAC	PASS							
2	Insulation resistance	Input-Output, 500VDC	≥100MΩ	PASS							

4.3.2. EMS (EFT: ±2KV, Surge: line to line ±1KV) and EMI (Class B)

This solution can meet the conventional performance in the datasheet, and meet EMS (EFT: $\pm 2KV$, Surge: line to line $\pm 1KV$) and EMI (Class B).

1) Peripheral circuits, PCB layout and recommended materials are as follows:

Recommended circuit	PCB Design(L*W*H: 59.0mm*29.0mm*20.05mm)
---------------------	--

Note: There are three PCB layouts are recommended. The first one is to meet the strict height requirements, the second one is to meet the strict length and width requirements, and the third one is to meet the strict width requirements.

PCB	Type Spec	Recommended	Recommended material	Recommended material
-----	-----------	-------------	-----------------------------	----------------------

广州金升阳科技有限公司 MORNSUN Guangzhou Science & Technology Co., Ltd.

3) Test report

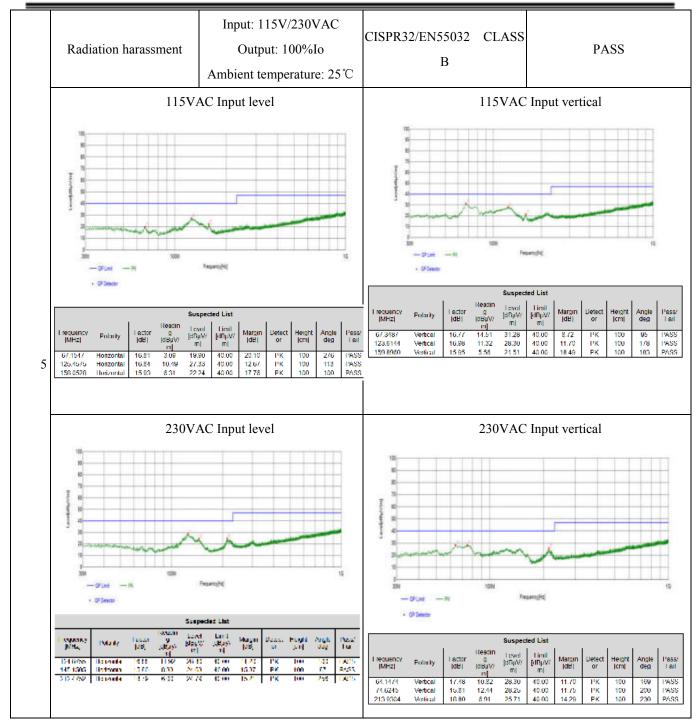
position			Brand	P/N	Brand	P/N	Brand	
FUSE	FUSE	1A/300VAC	Better	9321100	Conquer	MST-1A-300V	Littelfuse	
R1	Wire-wound Resistor	6.8Ω/3W	PAK HENG	NKN03BJ6R8	Yageo	RSF3WSJT-73 -6R8	Vishay	A
CX	Class-X Capacitor	104K/310V AC	Faratroni c	C42Q2104K4 SA405	HuaJung	MKP-104K03 05AT1108-PV	TDK	
LDM	Input inductor	1.2mH/0.35 A	EMei	DR8X10P2M 1.2-00	Wurth	7447720122	Bourns	R
C1	Input filter capacitor	22uF/450V	SAMXO N	ERD226M2W I20RR4RF	Rubycon	450BXW22M EFR18X16	Rubycon	45
CY1	Class-Y Capacitor	1nF/400VA C	Wmec	HJE102MA4 DW-400V-F6	Walsin	YU1AH102M 070BASDAH	TDK	CI
C2	Output filter capacitor	470uF/16V	SAMXO N	UER477M1C F1ATVXOCR	ELITE	UPE1C471M NN0811	Nichicon	Rì
L1	Output inductor	2.2uH/6.5A	Sunlord	SWPA4030S2 R2NT	Chilisin	AMQU000606 302R2MA1	Bourns	SI
С3	Output filter capacitor	150uF/35V	SAMXO N	ESK157M1JF 20TCSHP	Rubycon	35YXG150M EFC8X11.5	Rubycon	35

		General Performance Test(I	Part# LS10-13B12R3P)	
No.	Test Item	Test Condition	Specification	Test Result
1	No-load power consumption	Input: 230VAC Output: No load Temp.: 25°C	≤0.15W	0.12
2	Output Voltage Accuracy	Input: 85 to 305VAC Output: 10%Io to 100%Io Temp.: 25°C	±5%	1.15%
3	Line Regulation	Input: 85 to 305VAC Output: 100%Io Temp.: 25°C	±1.5%	1.16%
4	Load Regulation	Input: 85 to 305VAC Output: 10%Io to 100%Io Temp.: 25°C	±3%	0.93%

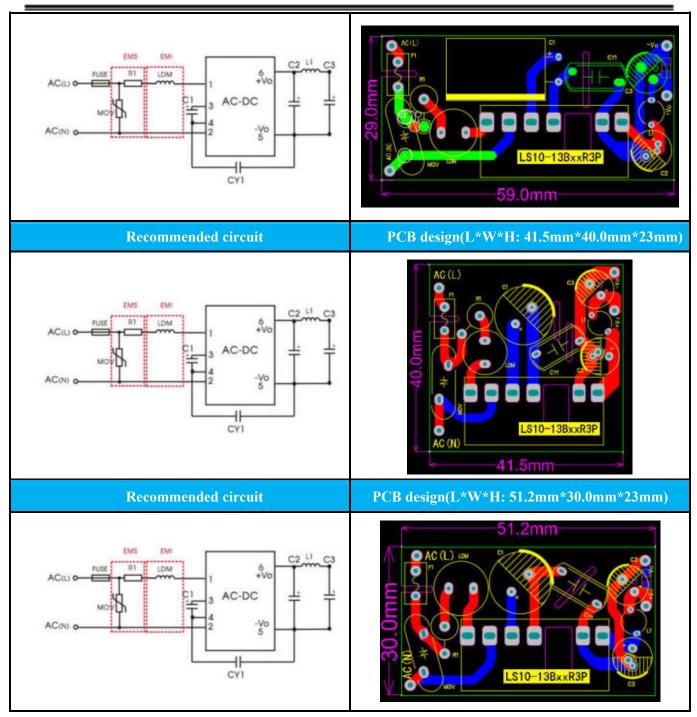
5	Efficiency	Input: 230VAC Output: 100%Io Temp.: 25°C	81%	84.08%		
	Ripple & Noise	Input: 85 to 305VAC Output: 10%Io to 100%Io Temp.: 25°C	150mV	103mV		
	Low frequency ripple::		High frequency ripple:			
6	No. 100 and 10	Aster 114 Mark Os use sir	Wage CLA mind and will see the class are seen and the class are seen are seen and the class are seen are seen are seen and the class are seen are seen are seen are seen and the class are seen are seen are seen are seen are seen a	0 -Med 18yw/ 158 16 -Med 18 -M		

Protection Test(Part# LS10-13B12R3P)							
No.	Test Item	Test Condition	Specification	Test Result			
1	Over-current Protection	Input: 85VAC Input: 230VAC Input: 305VAC Temp.: 25°C	≥110%Io	122%Io/85VAC 123%Io /230VAC 124%Io A/305VAC			
3	Short Circuit Protection	Input: 85VAC Input: 230VAC Input: 305VAC Temp.: 25°C	continuous, self-recovery	Short circuit for one hour without damage Mode: Hiccup, self-recovery			

	Safety Test(Part# LS10-13B12R3P)								
No.	Test Item	Test Condition	Specification	Test Result					
1	Isolation Voltage	Input-Output, Test for 1min., leakage current<5mA	≥3.6KVAC	PASS					
2	Insulation resistance	Input to Output: 500VDC	≥100MΩ	PASS					


EMC test(Test model: LS10-13B12R3P)

NO.	Item	Condition	Specification Result
1	surge	Input: 230VAC Output: 100%Io Ambient temperature: 25°C	IEC/EN61000-4-5 line to line ±1KV PASS
2	EFT	Input: 230VAC Output: 100%Io Ambient temperature: 25°C	IEC/EN61000-4-4 ±2KV PASS
3	ESD	Input: 230VAC Output: 100%Io Ambient temperature: 25°C	IEC/EN61000-4-2 Contact ±6KV PASS
4	CE	Input: 115V/230VAC Output: 100%Io Ambient temperature: 25°C	CISPR32/EN55032 CLASS B PASS
	IU Frequency Probe Cable Arten. UR Frequency Probe Cable Arten. UR The probability The probabi	C Input L LINE **Cocctor Meter Head Meas Level Limit Limit Uist.** AVG 22.9 36.4 46.0 9.6 AVG 25.6 36.1 46.0 -2.0 Paak 33.4 45.9 56.0 10.1	115VAC Input N LINE ID Frequency Probe Cable Aften Detector Meeer Read Meas Level Limit Dist. 9 1.197MHz 0.3 0.2 10.0 0.7 M/G 22.4 34.9 46.0 11.1 7 1.185MH 0.3 0.2 10.0 0.7 M/G 23.6 34.1 46.0 11.9 0 1.173MHz 0.3 0.2 10.0 0.7 M/G 23.6 34.1 46.0 11.9
		C Input L LINE	230VAC Input N LINE
	28bV 100 Limit 1 ENSORE 20 Electr 8 Will 2 4 (1816) 100 100 100 100 100 100 100 100 100 100	Description of the control of the co	The column Th
	12 1425MHz 0.3 0.2 10.0 0 10 1401MHz 0.3 0.2 10.0 0 11 1395MHz 0.3 0.2 10.0 0 9 1374MHz 0.3 0.2 10.0 0	Addictor Meter Bond Mens Level Limit Limit Dis C_AVC 26.3 38.8 46.0 -0.2 C_AVG 25.0 36.1 46.0 9.9 C_AVC 25.5 38.0 46.0 -10.0 C_AVG 25.2 75.0 46.0 10.2 MESSS 25.0 45.6 26.0 10.4	IU Frequency Probe Cable Arien. Detector Meter Read Meas Level Limit Limit Ulst. 12 1 1 1 1 1 1 1 1 1



4.3.3. EMS (EFT: ±4KV, Surge: line to line ±2KV) and EMI (Class A)

The plan can meet the conventional performance in our datasheet, and meet EMS (EFT: ± 4 KV, Surge: line to line ± 2 KV) and EMI (Class A).

1) Design peripheral circuits, PCB layout, and recommended materials list:

Recommended circuit PCB design(L*W*H:59.0mm*29.0mm*20.05mm)

Note: Three PCB layouts are recommended for this solution. The first is to meet the occasions with strict requirements for Height, the second is for occasions with requirements for length, and the third is for occasions with strict requirements for wide.

PCB	Туре		Recommended material		Recommended		Recommended material	
position			Brand	P/N	Brand	P/N	Brand	P/N

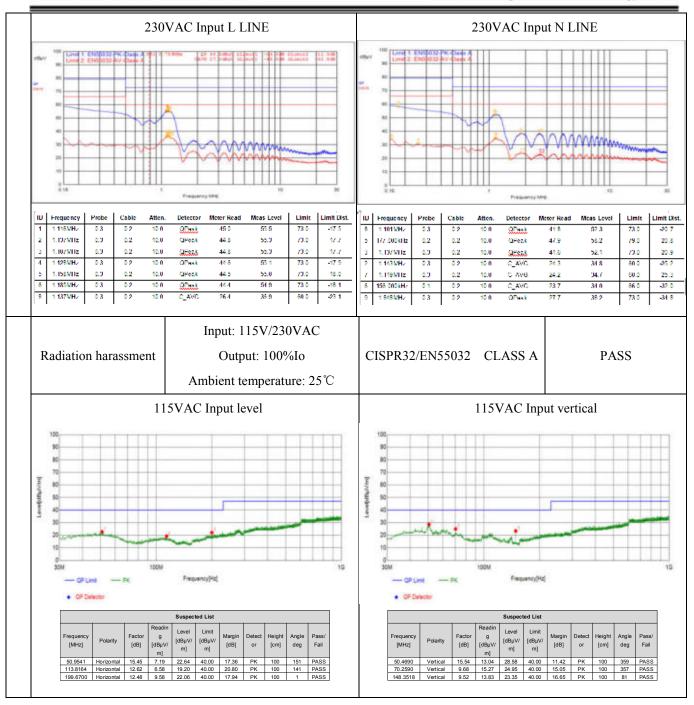
FUSE	FUSE	2A/300VA C	Better	9321200301	Gongde	MST-2A-300 V	Littelfuse	36912000000
MOV	VARISTOR	S14K350	New ford	DNR S14K350	TKS	TVR14561	YAGEO	681KD14
R1	Wire-wound Resistor	6.8Ω/3W	PAK HENG	NKN3WJ12R T	Yageo	NKN3WSFR -73-6R8	Vishay	AC03000006808J AC00
LDM	input inductor	1.2mH/0.3 5A	Yi mei	DR8X10P2M 1.2-00	Wurth	7447720122	Bourns	RLB1014-122KL
C1	Input filter capacitor	22uF/450V	SAMXON	ERD226M2W I20RR4RF	Rubycon	450BXW22 MEFR18X16	Rubycon	450BXW22MEFR 12.5X20
CY1	Class-Y Capacitor	1nF/400V AC	Wmec	HJE102MA4 DW-400V-F60	Hua xin ke	YU1AH102 M070BASD	TDK	CD45-E2GA102M -NKA
C2	Output filter capacitor	470uF/16V	SAMXON	UER477M1C F1ATVXOCR	ELITE	UPE1C471M NN0811	NCC	RNE1C471MDNA SQKX
L1	Output inductor	2.2uH/6.5 A	Sunlord	SWPA4030S2 R2NT	Qi li xin	AMQU0006 06302R2MA	Bourns	SRP5030C-2R2M
С3	Output filter capacitor	150uF/35V /Ф8*9	SAMXON	ESK157M1JF 20TCSHP	Rubycon	35YXG150 MEFC8X11.	Rubycon	35YXG150MEFC 8X11.5

3) Test report

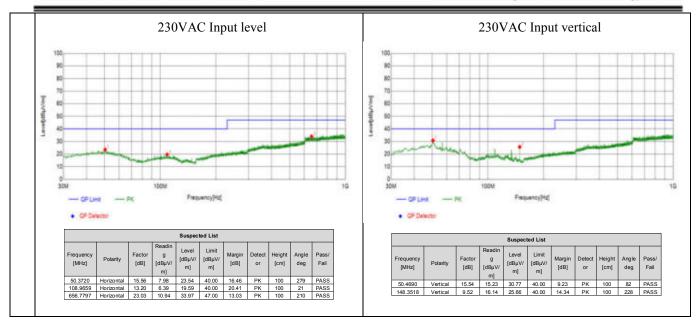
	Routine performance test(Test model: LS10-13B12R3P)							
NO.	Item	Condition	Specification	Result				
1	No-load power consumption	Input: 230VAC Output: No load	≤0.15W	0.12				
2	Ambient temperatur Input: 85 to 305 Output voltage accuracy Output: 10%Io to 1 Ambient temperatur		±5%	1.75%				
3	Voltage regulation rate	Input: 85 to 305VAC Output: 100%Io Ambient temperature: 25°C	±1.5%	0.16%				
4	Input: 85 to 305VAC 4 Load Regulation Output: 10%Io to 100%Io Ambient temperature: 25°C		±3%	1.25%				
5	Efficiency	Input: 230VAC	81%	84.08%				

1	MOKINS	UN	MORNSUN Guangzhou Science & Technology Co., Ltd.		
		Output: 100%Io Ambient temperature: 25℃			
	Ripple noise	Input: 85 to 305VAC Output: 10%Io to 100%Io Ambient temperature: 25°C	150mV	125mV	
	Low frequency ripple:		High frequency ripple:		
Low frequency ripple:		Anis 13 mai 11 mai 12 m	STATE OF THE STATE	Ann 20 yel NS STAN 2.5 STAN Ds STAN AND	
		Protection test(Test n	nodel: LS10-13B12R3P)		
NO.	Item	Condition	Specification	Result	
1	Overcurrent Protection	Input: 85VAC Input: 230VAC	≥110%Io	122%Io/85VAC 123%Io/230VAC	

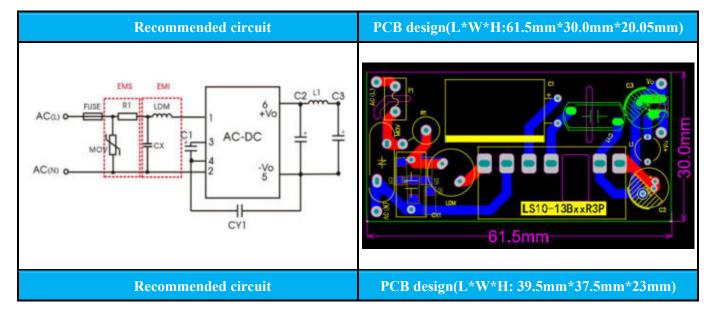
	Troccion test from Estv-13D12R51					
NO.	Item	Condition	Specification	Result		
1	Overcurrent Protection	Input: 85VAC Input: 230VAC Input: 305VAC Ambient temperature: 25°C	≥110%Io	122%Io/85VAC 123%Io /230VAC 124%Io A/305VAC		
3	Short circuit Protection	Input: 85VAC Input: 230VAC Input: 305VAC Ambient temperature: 25°C	Can be short-circuited for a long time	No damage after one hour short circuit Protection mode: output hiccup, self-recoverable		

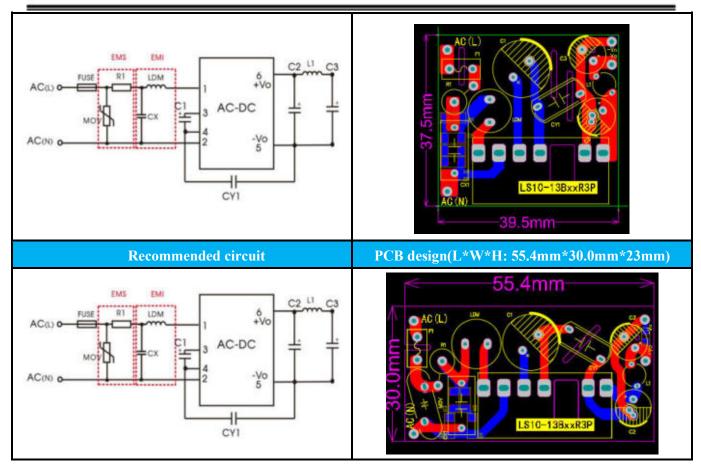

	Safety test (test # LS10-13B12R3P)						
No.	Test Item	Test Condition	Specification	Test Result			
1	Isolation Voltage	Input-Output, Test for 1min., leakage current<5mA	≥3.6KVAC	PASS			
2	Insulation resistance	Input to Output: 500VDC	≥50MΩ	PASS			

	EMC test(Test model: LS10-13B12R3P)							
NO	NO Item Condition Specification Result							



1	surge	Input: 230VAC Output: 100%Io Ambient temperature: 25°C	IEC/EN61000-4-5 line to line ±2KV	PASS	
2	EFT	Input: 230VAC Output: 100%Io Ambient temperature: 25°C	IEC/EN61000-4-4 ±4KV	PASS	
3	ESD	Input: 230VAC Output: 100%Io Ambient temperature: 25°C	IEC/EN61000-4-2 Contact ±6KV	PASS	
4	CE	Input: 115V/230VAC Output: 100%Io Ambient temperature: 25°C	CISPR32/EN55032 CLASS A	PASS	
	115VA	C Input L LINE	115VAC Input N LINE		
	2 ENGS 2 ENGS 2 AV Class A 2 ENGS 2 AV Class A 30 40 40 40 40 40 40 40 40 40	Prequency Mits:	### 100	Frequency Mrs.	
		etector Meter Head Meas Level Limit Limit Uist.	ID Frequency Probe Cable Amen, D	etector Meter Head Meas Level Limit Limit Ulst.	
	1 1	<u>2Peak</u> 41.9 51.6 79.0 27.4	3 1 149MHz 0.3 0.2 10.0	OPeak 37.5 48.1 73.0 -24.9	
		2Peak 34.6 45.0 73.0 20.0 2_AVG 20.8 31.3 60.0 -28.7		<u>QPeak 35.1 45.6 73.0 27.4</u> QPeak 40.8 51.1 79.0 -27.9	
	5 1.140MHz 0.3 0.2 10.0 0	: AVG 20.5 31.0 60.0 29.0		C_AVG 192 298 600 -302	
		EAVO 247 351 650 4009 EAVO 177 281 600 4319	4 642.000kHz 0.2 0.2 10.0 0	2 AVG 18.2 20.6 60.0 31.4	
		AVG 12.1 22.5 60.0 37.5	1 183 000kHz 0.2 0.2 10.0 0	C_AVG 23.9 34.2 65.0 -31.8	



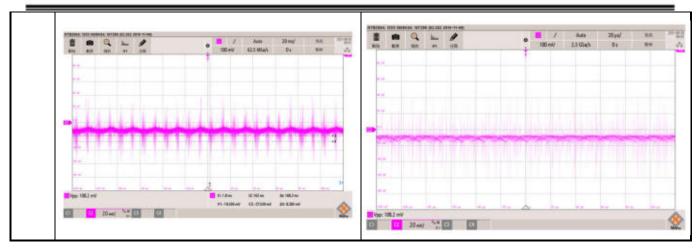


4.3.4. EMS (EFT: ±4KV, Surge: line to line ±2KV) and EMI (Class B)

The plan can meet the conventional performance in our datasheet, and meet EMS (EFT: ± 4 KV, Surge: line to line ± 2 KV) and EMI (Class B)

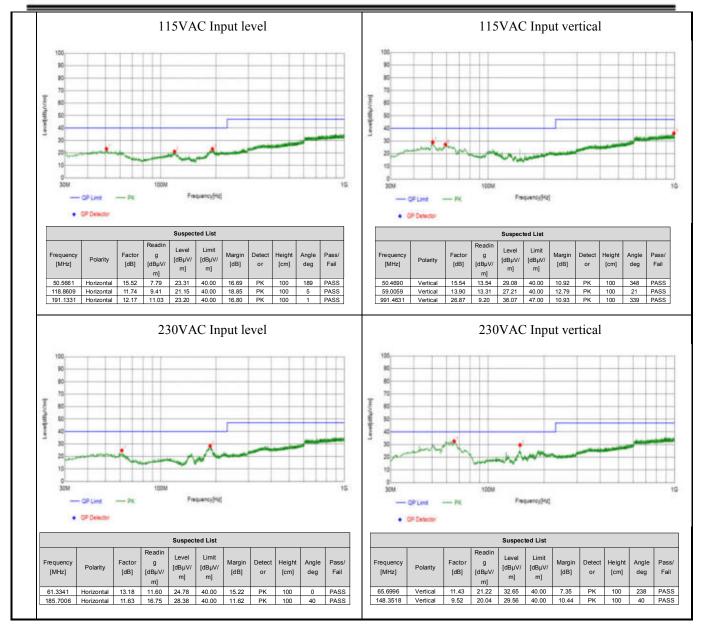
1) Design peripheral circuits, PCB layout, and recommended materials list:

Note: Three PCB layouts are recommended for this solution. The first is to meet the occasions with strict requirements for Height, the second is for occasions with requirements for length, and the third is for occasions with strict requirements for wide.


РСВ _			Recommended material		Recommended		Recommended material	
position	ion Spec		Brand	P/N	Brand	P/N	Brand	P/N
FUSE	FUSE	2A/300VAC	Better	9321200301	Gongde	MST-2A-300V	Littelfuse	36912000000
MOV	VARISTOR	S14K350	New ford	DNR S14K350	TKS	TVR14561	YAGEO	681KD14
R1	Wire-wound Resistor	6.8Ω/3W	PAK HENG	NKN03BJ6R8	Yageo	NKN3WSFR-7 3-6R8	Vishay	AC03000006808JA C00
CX	Class-X Capacitor	104K/310VA C	Faratronic	C42Q2104K4S A405	Huahung	MKP-104K030 5AT1108-PV	TDK	B32912A3104K
LDM	Input inductor	1.2mH/0.35A	Dong guan Yi mei	DR8X10P2M1. 2-00	Wurth	7447720122	Bourns	RLB1014-122KL

3) Test report	C1	Input filter capacitor	22uF/450V	SAMXON	ERD226M2WI 20RR4RF	Rubycon	450BXW22ME FR18X16	Rubycon	45
	CY1	Class-Y Capacitor	1nF/ 400VAC	Wmec	HJE102MA4D W-400V-F6001	Hua xin ke	YU1AH102M0 70BASDAH	TDK	CI
	C2	Output filter capacitor	470uF/16V	SAMXON	UER477M1CF 1ATVXOCR	ELITE	UPE1C471MN N0811	Nichicon	R
	L1	Output inductor	2.2uH/6.5A	Sunlord	SWPA4030S2 R2NT	Qi li xin	AMQU000606 302R2MA1	Bourns	S
	СЗ	Output filter capacitor	150uF/35V	SAMXON	ESK157M1JF2 0TCSHP	Rubycon	35YXG150ME FC8X11.5	Rubycon	35

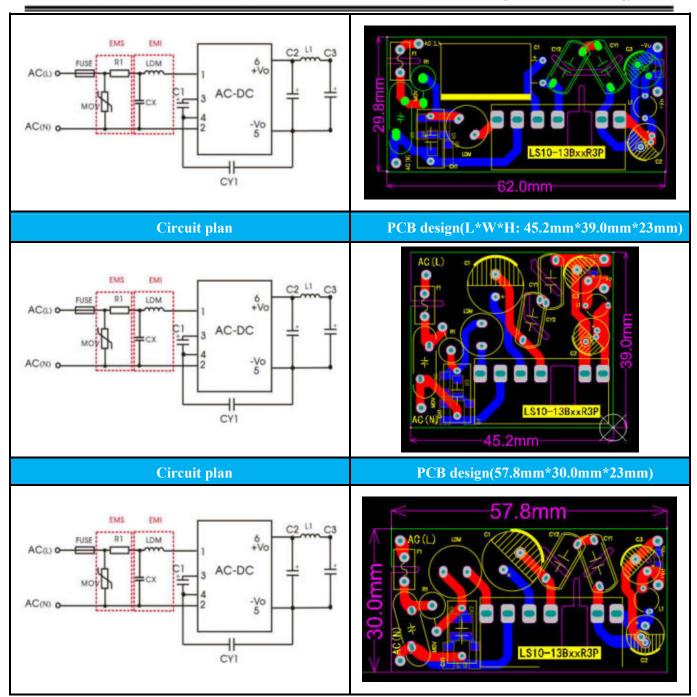
		1		
	F	Routine performance test(T	est model: LS10-13B12R3	P)
NO.	Item	Condition	Specification	Result
1	No-load power consumption	Input: 230VAC Output: No load Ambient temperature: 25°C	≤0.15W	0.12
2	Output voltage accuracy	Input: 85 to 305VAC Output: 10%Io to 100%Io Ambient temperature: 25°C	±5%	1.75%
3	Voltage regulation rate	Input: 85 to 305VAC Output: 100%Io Ambient temperature: 25°C	±1.5%	0.16%
4	Load Regulation	Input: 85 to 305VAC Output: 10%Io to 100%Io Ambient temperature: 25°C	±3%	1.25%
5	Efficiency	Input: 230VAC Output: 100%Io Ambient temperature: 25°C	81%	84.08%
6	Ripple noise	Input: 85 to 305VAC Output: 10%Io to 100%Io Ambient temperature: 25°C	150mV	108mV
	Low frequency ripple:		High frequency ripple:	


	Protection test(Test model: LS10-13B12R3P)						
NO.	Item	Condition	Specification	Result			
1	Overcurrent Protection	Input: 85VAC Input: 230VAC Input: 305VAC Ambient temperature: 25°C	≥110%Io	122%Io/85VAC 123%Io /230VAC 124%Io A/305VAC			
3	Short circuit Protection	Input: 85VAC Input: 230VAC Input: 305VAC Ambient temperature: 25°C	Can be short-circuited for a long time	No damage after one hour short circuit Protection mode: output hiccup, self-recoverable			

	Safety test(testLS10-13B12R3P)						
No.	Test Item	Test Condition	Specification	Test Result			
1	Isolation Voltage	Input-Output, Test for 1min., leakage current<5mA	≥3.6KVAC	PASS			
2	Insulation resistance	Input to Output: 500VDC	≥50MΩ	PASS			

	EMC test(Test model: LS10-13B12R3P)						
NO	Item	Condition	Specification	Result			
1	surge	Input: 230VAC Output: 100%Io Ambient temperature: 25°C	IEC/EN61000-4-5 line to line ±2KV	PASS			

_=	T		I		
		Input: 230VAC			
2	EFT	Output: 100%Io	IEC/EN61000-4-4 ±4KV	PASS	
		Ambient temperature: 25°C			
		Input: 230VAC	IEC/EN61000-4-2		
3	ESD	Output: 100%Io	Contact ±6KV	PASS	
		Ambient temperature: 25℃	Contact ±0K v		
		Input: 115V/230VAC	CIGRE 22/EN 55022		
4	CE	Output: 100%Io	CISPR32/EN55032	PASS	
		Ambient temperature: 25°C	CLASS B		
	115VA	.C Input L LINE	115VAC	Input N LINE	
	other Land 1 Entleton Pro-Grade II		ther Comp 1 ENGS032 PK Dade 0		
	ESTAL Z. ESTADOS AV GAMA II				
	79		79		
	50		65		
	***********		***************************************		
	10		10		
	3.16	Pressency MAC 10 30	9.16	Frequency Mrs. 40 30	
	3 204,000kHz 0.2 0.2 10.0 0	etector Meter Resul Messe Level Limit Limit Dist. : AVS 16.0 27.2 53.4 26.0	' ' -	######################################	
	6 720.000MHz 0.2 0.2 10.0 0	TP-sik 19.0 20.5 58.0 -26.5 : AVG 9.0 19.5 46.0 26.5	4 690 000kHz 02 02 10 0 C	ACS66 204 309 500 25.1 _AVG 98 202 46.0 -25.8 GPeak 19.5 29.9 56.0 26.1	
	5 687 000kHz 02 02 10 0 9	; AVG 8.6 19.1 46.0 26.9 <u>3Peak</u> 15.4 25.9 56.0 -30.1	2 204,000kHz 0.2 0.2 10.0 C	2 AVG 15.7 26.1 59.4 27.4 20 30 30 30 30 4 30 1	
	2 204,000kHz 0.2 0.2 10.0 (2Peak 22.7 19.1 61.4 10.4		1 1 1	
	230VA	.C Input L LINE	230VA	C Input N LINE	
	abov NE Limit ENGLOSPI Chap II		100 Limq 1 ENSB032 PK-Dash 0 Limq 2 ENSB032 PK-Dash 0 Limq 2 ENSB032 PK-Dash 0	·	
	Emil 2 ENGIOSAV Grant II		So Limit 2: EXEMPESS INVASABLE II		
	20		79		
	50		65		
	* Andrew		**********		
	20		20		
	8.16	Frequency life:	2:16	Frequency MHS 50 30	
		efector Meter Read Meas Level Limit Limit Dist.	' ' 	elector Meler Rand Mens Level Limit Limit Dist.	
	2 168.000kHz 0.1 0.2 10.0 0	3Peak 29.9 40.2 65.1 24.8	3 1.102MHz 0.0 0.2 10.0 C	3Feak 26.7 37.2 56.0 18.8 5 AVG 11.1 21.6 46.0 24.4	
	1 171 000kHz 01 02 100 C	AVG 10.1 20.6 46.0 25.4 EAVG 18.4 28.8 54.9 26.2 EAVG 18.4 28.8 54.9 26.2	5 660.000kHz 0.2 0.2 10.0 C	Phask 19.9 30.3 56.0 -25.7 AVG 9.4 19.0 46.0 26.2	
	5 870 000kHz 0.3 0.2 10.0 (CAVG U.9 19.0 46.0 26.7 Charl 15.0 25.5 56.0 -30.5 Charl 15.1 25.5 56.0 -30.5		_AVG 179 282 549 -26.7 Dhak 18.1 28.8 60.0 -31.2	
	v on water 97 97 1011 (enno titt 200 (000 (000)			
		Input: 115V/230VAC	CISPR32/EN55032		
	Radiation harassment	Output: 100%Io	CLASS B	PASS	
L		Ambient temperature: 25 ℃	CLASS B		



4.3.5. EMS (EFT: ±4KV, Surge: line to line ±2KV) and EMI (Class B) meets EN60335 standard

The plan can meet the conventional performance in our datasheet, and meet EMS (EFT: ± 4 KV, Surge: line to line ± 2 KV) and EMI (Class B)

1) Design peripheral circuits, PCB layout, and recommended materials list:

Recommended circuit PCB design(L*W*H: 62.0mm*29.8mm*20.05mm)
--

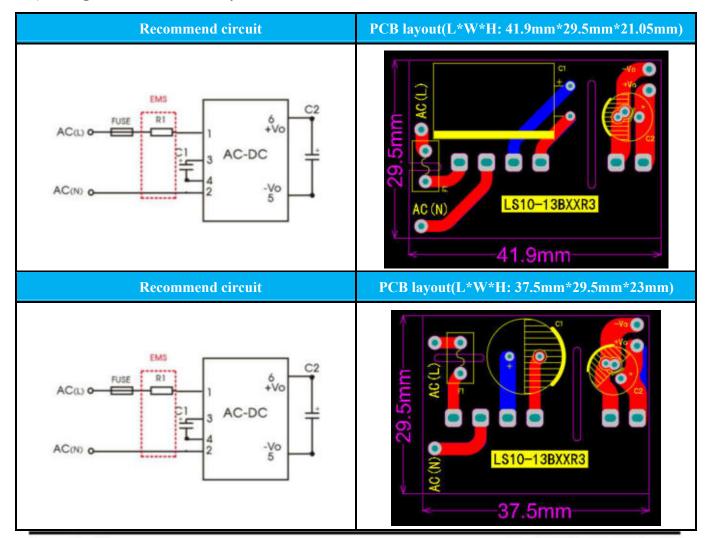
Note: Three PCB layouts were recommended to this solution. The first type is to meet the occasion that has requirement for height, the second one is for those has requirement for length and the last one is for those has requirement for Width.

2) **BOM**:

РСВ	Type		Recommended material combination 1		Recommended material combination 2		Recommended material combination 3	
position			Brand	P/N	Brand	P/N	Brand	P/N
CY1/CY2	V2 Can	1mE/250VAC	WMEC	HME102M	Walain	YU1AC102	TDV	CS80-E2G
C 1 1/C 1 2	Y2 Cap	ap 1nF/ 250VAC	WMEC HME10	HME102W	E102M Walsin	M060	TDK	A102MY

Note: The only difference between two Y cap solution and part 4.3.4 single Y cap solution are on the distance of PCB and raw materials of Y cap. Test result of the two solutions do not have much difference. Therefore, the recommend materials list can refer to the test data and specification of other components of 4.3.4 except Y cap.

3) Test report


Test result between two Y cap solution and part 4.3.4 single Y cap solution do not have much difference. The only difference is on the distance of PCB and raw materials of Y cap. Therefore, test result can refer to the test report on 4.3.4.

4.4. LS10-13BxxR3 series uses 12VDC output as an example to recommend solutions and data packages

4.4.1. Minimization solution (Achieve normal output function)

This solution can achieve normal output of power supply module, but we do not promise other performance. This solution suitable for strict cost requirements, but no performance requirements application.

1) Design circuit and PCB layout are as follows:

Note: There are two kinds PCB layouts are recommended for this solution. The first is for strict height requirement situations, and the second is for situations where length and width are required but the height is less limited.

2) Recommended Materials List:

PCB	Туре	Spec	Recommended material combination 1		Recommended material combination 2		Recommended material combination 3	
position			Brand	P/N	Brand	P/N	Brand	P/N
FUSE	FUSE	1A/300VA C	Better	9321100	Conquer	MST-1A-300V	Littelfuse	36911000000
R1	Wire-wound Resistor	6.8Ω/3W	PAK HENG	NKN03BJ6R8	Yageo	NKN3WSFR-7 3-6R8	Vishay	AC03000006808JA C00
C1	Input filter capacitor	22uF/450V	SAMXON	ERD226M2WI 20RR4RF	Rubycon	450BXW22ME FR18X16	Rubycon	450BXW22MEFR1 2.5X20
C2	Output filter capacitor	270uF/16V/ Ф6.3*8	SAMXON	UER277M1CE 08TUX0CR	ELITE	UPE1C271MN N6308	NCC	RS81C271MDN1

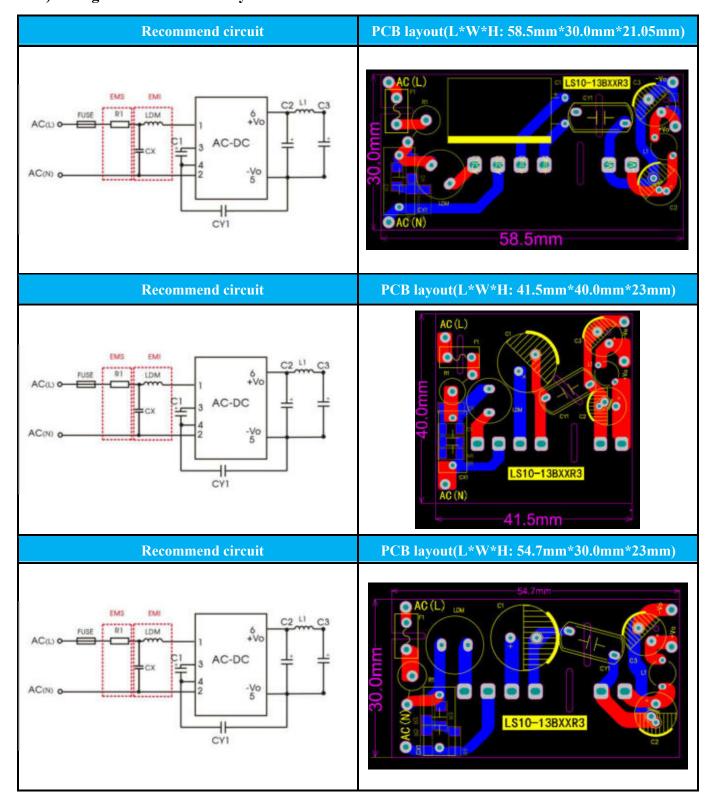
Note: We recommend three device combinations, you can choose any one.

3) Test report

	General performance test(test module: : LS10-13B12R3)								
NO TEST ITEM		SPECIFICATION	SPECIFICATION	RESULT					
1	NO LOAD POWER CONSUMPTION	I/P:: 230VAC O/P: No load Ta: 25°C	≤0.15W	0.12W					
2	Output Voltage Accuracy	I/P: 85 to 305VAC O/P: 10%Io to 100%Io Ta: 25°C	±2%	0.75%					
3	OUTPUT VOLTAGE TOLERANCE	I/P: 85 to 305VAC O/P: 10%Io to 100%Io Ta: 25°C	±1%	0.16%					
4	LOAD REGULATION	I/P: 85 to 305VAC O/P: 10%Io to 100%Io Ta: 25°C	±1.5%	0.25%					
5	EFFICIENCY(Typ.) I/P: 230VAC		80%	82.88%					

	O/P: 100%Io Ta: 25°C		
RIPPLE & NOISE(Max)	I/P: 85 to 305VAC O/P: 10%Io to 100%Io Ta: 25°C	150mV	126mV
low frequency:		high frequency:	
	## / Aufo 15mm/ RN N1	#*************************************	/ Auto 10 yel 800. -11 mW 2.5 Charls -12 yes 10 ye
		ear i	
-	****	•	
***		mr.	

	Protection function test(test module: LS10-13B12R3)								
NO	NO TEST ITEM SPECIFICATION		SPECIFICATION	RESULT					
1	Over-current Protection	I/P: 85VAC I/P: 230VAC I/P: 305VAC Ta: : 25°C	≥110%Io	136%Io/85VAC 145%Io/230VAC 146%Io/305VAC					
3	3 Short Circuit Protection	I/P: 85VAC I/P: 230VAC I/P: 305VAC Ta: : 25°C	Can short circuit for long time	Short output 1 hour no damage, Hiccup mode, recovers automatically after fault condition is removed					


	Safety test(test module: LS10-13B12R3)								
NO	TEST ITEM	SPECIFICATION	SPECIFICATION	RESULT					
1	WITHSTAND	I/P to O/P: testing time 1	>3.6KVAC	PASS					
1	VOLTAGE	mins, leakage current<5mA	≥5.0K VAC	PASS					
2	ISOLATION	I/P to O/P: 500VDC	≥100MΩ	PASS					
2	RESISTANCE	1/F to O/F. 300 VDC							

4.4.2. EMS (EFT: ±2KV, Surge: line to line ±1KV) and EMI (Class B)

This solution can meet all the performance in our datasheet, as well as EMS (EFT: ± 2 KV, Surge: line to line: ± 1 KV) and EMI (Class B).

1) Design circuit and PCB layout are as follows:

Note: There are three kinds PCB layouts are recommended for this solution. The first is for strict height requirement situations, and the second is for situations where length and width are required but the height is less limited. The third is for strict width requirement situations.

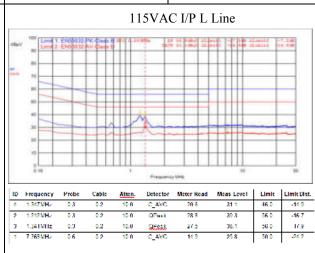
2) BOM:

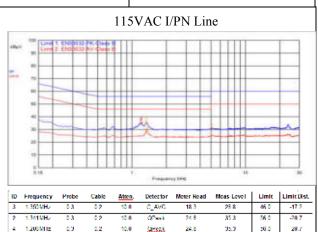
PCB positio	Туре	Spec		ended material		ommended combination 2		nended material
n			Brand	P/N	Brand	P/N	Brand	P/N
FUSE	FUSE	1A/300VAC	Better	9321100	Conquer	MST-1A-300V	Littelfuse	36911000000
R1	Wire-woun d Resistor	6.8Ω/3W	PAK HENG	NKN03BJ6R8	Yageo	RSF3WSJT-73 -6R8	Vishay	AC03000006808J AC00
CX	Class-X Capacitor	104K/310VAC	faratronic	C42Q2104K4S A405	НЈС	MKP-104K03 05AT1108-PV	TDK	B32671Z6104
LDM	Input inductor	2.2mH/0.24A	Hua Chen	HCRC0312T-2 ROM	Wurth	7447720222	Bourns	RLB1014-222KL- ND
C1	Input filter capacitor	22uF/450V	SAMXO N	ERD226M2WI 20RR4RF	Rubycon	450BXW22M EFR18X16	Rubycon	450BXW22MEFR 12.5X20
CY1	Class-Y Capacitor	1nF/400VAC	wmec	HJE102MA4D W-400V-F6001	walsin	YU1AH102M 070BASDAH	TDK	CD45-E2GA102M -NKA
C2	Output filter	270uF/16V	SAMXO N	UER277M1CE0 8TUXOCR	ELITE	UPE1C271 MNN6308	Nichicon	PLS1C271MDO1
L1	Output inductor	2.2uH/6.5A	Hua Chen	SWPA4030S2R 2NT	chilisin	AMQU000606 302R2MA1	Bourns	SRP5030C-2R2M
С3	Output filter	150uF/35V	SAMXO N	ESK157M1JF2 0TCSHP	Rubycon	35YXG150M EFC8X11.5	Rubycon	35YXG150MEFC 8X11.5

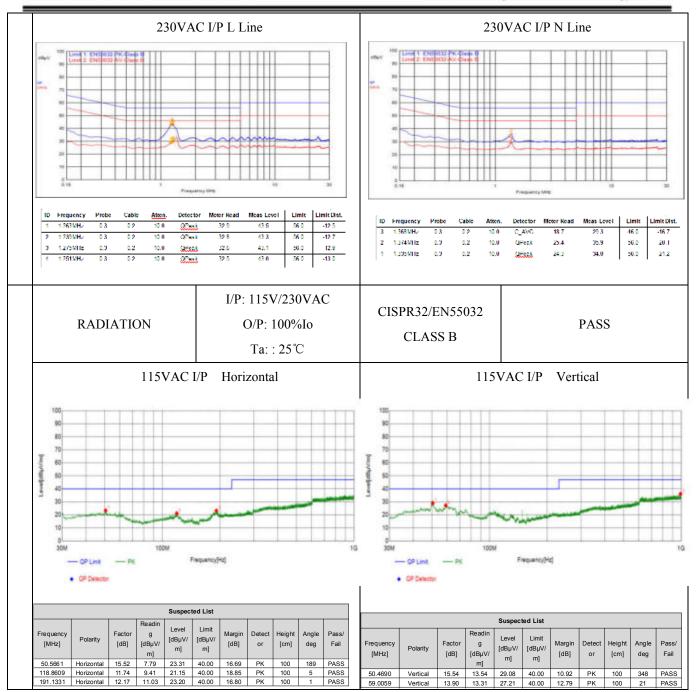
3) Test Report

	General performance test(test module: LS10-13B12R3)								
NO	TEST ITEM	SPECIFICATION	SPECIFICATION	RESULT					
1	NO LOAD POWER CONSUMPTION	I/P: 230VAC O/P: No load Ta: : 25°C	≤0.15W	0.12W					
2	Output Voltage Accuracy	I/P: 85 to 305VAC O/P: 10%Io to 100%Io	±2%	0.75%					

2						
3	OUTPUT VOLTAGE TOLERANCE	I/P: 85 to 305VAC O/P: 100%Io Ta: : 25℃	±1%	0.16%		
4	LOAD REGULATION	I/P: 85 to 305VAC O/P: 10%Io to 100%Io Ta: : 25°C	±1.5%	0.25%		
5	EFFICIENCY(Typ.)	I/P: 230VAC O/P: 100%Io Ta: : 25℃	80%	82.88%		
	RIPPLE & NOISE(Max)	I/P: 85 to 305VAC O/P: 10%Io to 100%Io Ta: : 25℃	150mV	125mV		
	low frequency:		high frequency:			
6	TOTAL CONTRACT OF THE PARTY OF	0 / Auto 10-es/ 10.0 = 0.0	STREET, STREET	1		

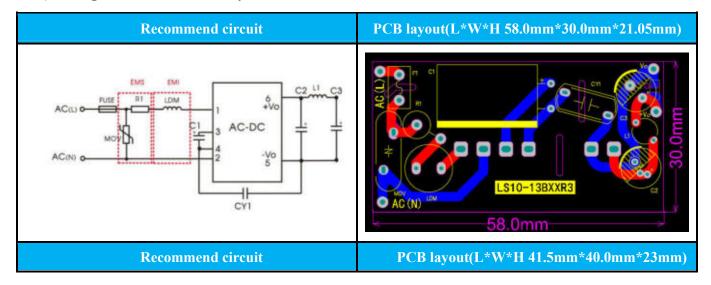

	Protection function test(test moduleLS10-13B12R3)								
NO	TEST ITEM	SPECIFICATION	SPECIFICATION	RESULT					
1	Over-current Protection	I/P: 85VAC I/P: 230VAC I/P: 305VAC Ta: : 25°C	≥110%Io	1.13A/85VAC 1.20A/230VAC 1.21A/305VAC					
3	Short Circuit Protection	I/P: 85VAC I/P: 230VAC I/P: 305VAC Ta: : 25℃	Can Short output for long term	Short output 1 hour no damage Hiccup mode, recovers automatically after fault condition is removed					

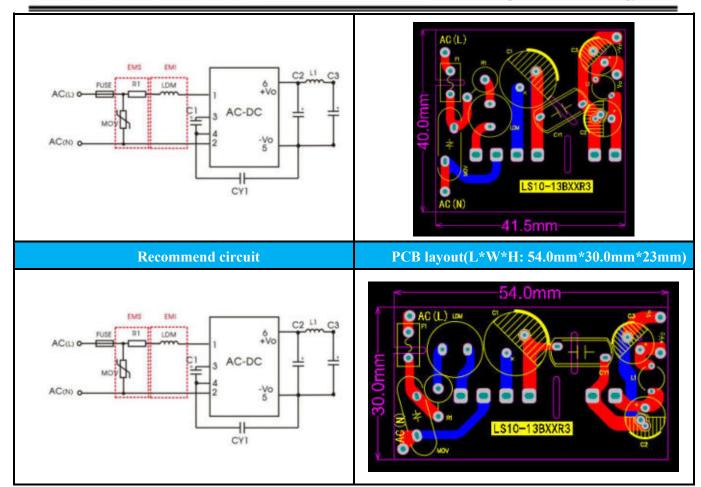



No.	Test Item	Test Condition	Specification	Test Result
1	Isolation Voltage	Input-Output, Test for 1min., leakage current<5mA	≥3.6KVAC	PASS
2	Insulation resistance	Input to Output: 500VDC	≥100MΩ	PASS

	EMC test(test module: LS05-13B12R3)									
NO	TEST ITEM	TEST ITEM SPECIFICATION		RESULT						
1	surge	I/P: 230VAC O/P: 100%Io Ta: : 25°C	IEC/EN61000-4-5 line to line ±1KV	PASS						
2	EFT	I/P: 230VAC O/P: 100%Io Ta: : 25°C	IEC/EN61000-4-4 ±2KV	PASS						
3	ESD	I/P: 230VAC		PASS						
4	СЕ	I/P: 115V/230VAC O/P: 100%Io Ta: : 25℃	CISPR32/EN55032 CLASS B	PASS						

ID	Frequency	Probe	Cable	Atten.	Detector	Meter Read	Meas Level	Limit	Limit Dist.
3	1.350MHz	0.3	0.2	10.0	C_AVG	18.3	28.8	46.0	-17.2
2	1.341MHz	0.3	0.2	10.0	QPank	24.8	35.3	56.0	-20.7
4	1.206MHz	0.0	0.2	10.0	Offices	24.8	35.3	56.0	20.7
1	5 064 MHz	0.5	0.2	10.0	<u>OPeak</u>	20.4	31.1	60.0	-28.9
								-	





4.4.3. EMS (EFT: ±4KV, Surge: line to line ±2KV) and EMI (Class A)

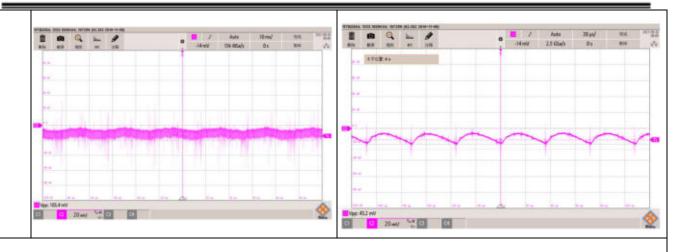
This solution can meet all the performance in our datasheet, as well as EMS (EFT: ± 4 KV, Surge: line to line ± 2 KV) and EMI (Class A)

1) Design circuit and PCB layout are as follows:

Note: There are three kinds PCB layouts are recommended for this solution. The first is for strict height requirement situations, and the second is for situations where length and width are required but the height is less limited. The third is for strict width requirement situations.

2) BOM:

PCB	Type Spec		Recommended material combination 1		Recommended material combination 2		Recommended material combination 3	
position			Brand	P/N	Brand	P/N	Brand	P/N
FUSE	FUSE	2A/300VAC	Better	9321200301	Gongde	MST-2A-300 V	Littelfuse	36912000000
MOV	VARIST OR	S14K350	New ford	DNR S14K350	Thinking	TVR14561	YAGEO	681KD14
R1	Wire-wo und	6.8 Ω /3W	PAK HENG	NKN3WJ12R T	Yageo	NKN3WSFR -73-6R8	Vishay	AC03000006808J AC00
LDM	input inductor	2.2mH/0.24A	Yi mei	HCRC0312T- 2ROM	Wurth	7447720222	Bourns	RLB1014-222KL- ND

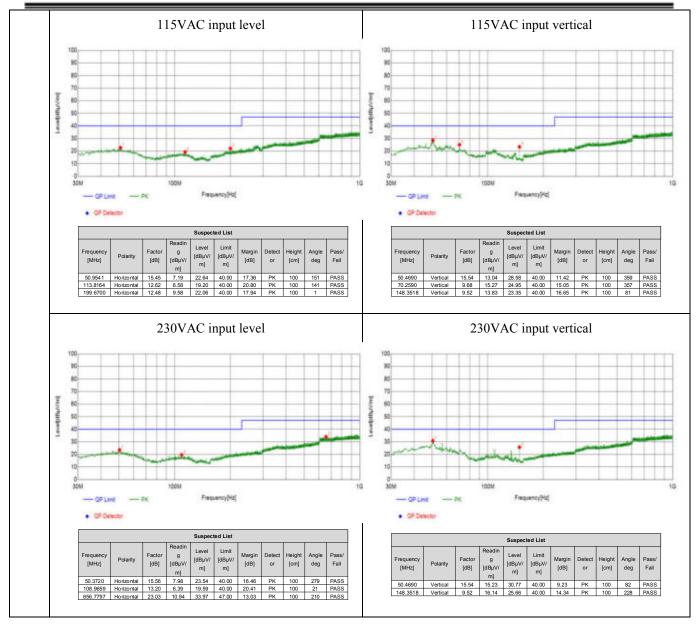


C1	Input	22uF/450V	SAMXON	ERD226M2WI2	Rubycon	450BXW22	Rubycon	450BXW22MEFR
CI	filter	22u1/430 V	SAMAON	ORR4RF	Rubycon	MEFR18X16	Kubycon	12.5X20
CV1	Class-Y	1 F/4001/4 C	Weed	HJE102MA4	Hua xin ke	YU1AH102	TDK	CD45-E2GA102M
	CY1 Capacitor 1	1nF/400VAC	Wmec	DW-400V-F60		M070BASD	IDK	-NKA
C2	Output	270uF/16V	SAMXON	UER277M1C	ELITE	UPE1C271M	NCC	PLS1C271MDO1
02	filter	2/0ur/10 v	SAMAON	E08TUXOCR		NN6308	NCC	PLSIC2/IMDOI
L1	Output	2.2uH/6.5A	Sunlord	SWPA4030S2	Qi li xin	AMQU0006	Dourna	SRP5030C-2R2M
LI	inductor	2.2uH/0.3A	Sumora	R2NT	Qi ii xiii	06302R2MA	Bourns	SRP3030C-2R2W
Co	Output	150uF/35V/Ф	CANGNON	ESK157M1JF	Rubycon	35YXG150	Dubyoon	35YXG150MEFC
C3	filter	8*9	SAMXON	20TCSHP		MEFC8X11.	Rubycon	8X11.5

3) Test Report

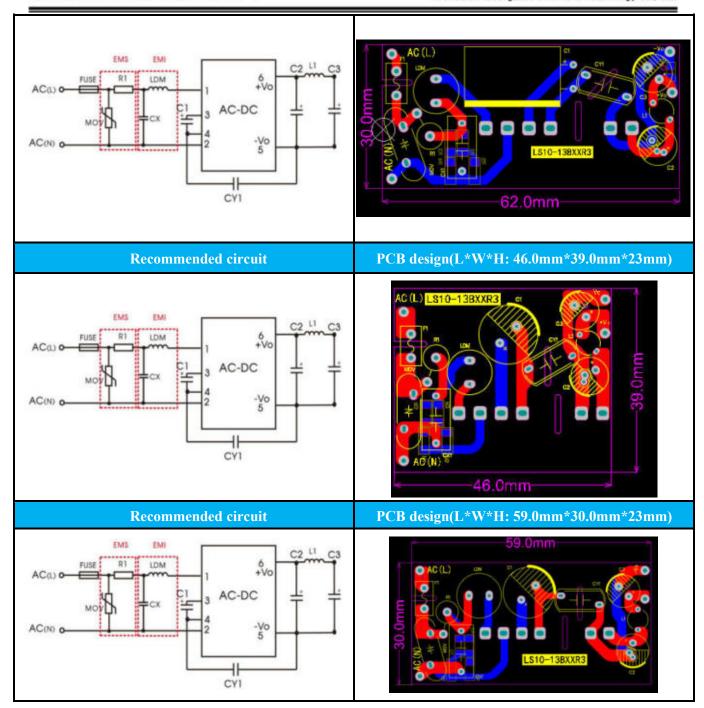
		Routine performance test	(test model: LS10-13B12R3	3)
NO.	Test items	Test condition	Spec.	Result
1	No-load power consumption	Input: 230VAC Output: No load Ambient temperature: 25°C	≤0.15W	0.12
2	Output voltage accuracy	Input: 85 to 305VAC Output: 10%Io to 100%Io Ambient temperature: 25°C	±2%	0.75%
3	Voltage regulation rate	Input: 85 to 305VAC Output: 100%Io Ambient temperature: 25°C	±1%	0.16%
4	Load Regulation	Input: 85 to 305VAC Output: 10%Io to 100%Io Ambient temperature: 25°C	±1.5%	0.25%
5	Efficient	Input: 230VAC Output: 100%Io Ambient temperature: 25°C	80%	82.88%
6	Ripple noise	Input: 85 to 305VAC Output: 10%Io to 100%Io Ambient temperature: 25℃	150mV	103mV
	Low frequency ripple:		High frequency ripple:	

	Protection test (test model: LS10-13B12R3)								
NO.	Test items	Test condition	Spec.	Result					
1	Over-current protection	Input: 85VAC Input: 230VAC Input: 305VAC Ambient temperature: 25°C	≥110%Io	136%Io/85VAC 145%Io/230VAC 146%Io/305VAC					
3	Short circuit protection	Input: 85VAC Input: 230VAC Input: 305VAC Ambient temperature: 25°C	Can be short-circuited for a long time	No damage after one hour short circuit Protection mode: output hiccup, self-recovery					


	Safety test (test LS10-13B12R3)									
NO.	Test items	Test condition	Spec.	Result						
1	Isolation withstand voltage	Input to output: test time 1 minute, leakage current <5mA	≥3.6KVAC	PASS						
2	Insulation resistance	Input to output: 500VDC	≥100MΩ	PASS						

	EMC 测试(测试型号: LS10-13B12R3)									
NO.	Test items	Test condition	Spec.	Result						
1	surge	Input: 230VAC Output: 100%Io Environment temperature: 25℃	IEC/EN61000-4-5 line to line ±2KV	PASS						
2	EFT	Input: 230VAC Output: 100%Io	IEC/EN61000-4-4 ±4KV	PASS						

		Environment temperature: 25°C				
3	ESD	Input: 230VAC Output: 100%Io Environment temperature: 25°C	IEC/EN61000-4-2 Contact ±6KV	PASS		
4	CE	Input: 115V/230VAC Output: 100%Io Environment temperature: 25°C	CISPR32/EN55032 CLASS A	PASS		
	115	VAC input L line	115VAC input N line			
	#BWV 90 Larred 1 1570(03)3 JN-Clark A Larred 2 1570(03)3 JN-Clark A Larred 3 1570(03)3 JN-Clark A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pisquence Wes. 35 36	### 100 Limit 1 ENGED32-PK-Glady A Limit 2 ENGED	unity Mit		
	ID Frequency Probe Cable ARCOL	Detector Meter Read Meas Level Limit Limit Umit Umi	ID	k 375 481 730 -240 k 75.1 45.6 73.0 27.4 k 40.8 51.1 75.0 -27.9 G 19.2 29.8 60.0 30.2 G 18.2 20.6 60.0 71.4 C 23.0 24.2 55.0 21.8		
	#56W 00 Lengt E96S532PK-Esah A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Fraquency life 10 30	### 100 Umil 1 ENROD): PX Sud- A Line 2 E185033-AV-Ches A 4 40 40 40 40 40 40 40 40 40 40 40 40 4	uncy Mre		
	III Frequency Probe Cable Attent 1 11950Hz 0.3 0.9 10.0 2 11.07MHz 0.3 0.2 10.0 3 11.07MHz 0.3 0.2 10.0 4 11950Hz 0.3 0.2 10.0 5 11950Hz 0.3 0.2 10.0 6 11950Hz 0.3 0.2 10.0 6 11950Hz 0.3 0.2 10.0 8 11950Hz 0.3 0.2 10.0 8 11950Hz 0.3 0.2 10.0	Detector Meter Read Meas Level Limit Limit Limit Offices 448 559 730 -17.5 Offices 448 55.0 73.0 17.7 Offices 448 55.0 73.0 17.7 Offices 44.6 55.1 73.0 -17.9 Offices 44.0 55.0 73.0 18.0 Offices 44.4 54.9 73.0 -18.1 C_AVO 26.4 36.9 60.0 -23.1	8 1101MHz 0.3 0.2 10.0 QPec 5 177,00081z 0.2 0.2 10.0 QPec	delt 418 52.3 73.0 -90.7 delt 47.9 58.2 79.0 20.8 delt 41.6 52.1 73.0 20.9 GC 24.3 34.8 60.0 -25.2 GE 24.2 34.7 60.0 25.3 GC 23.7 34.0 66.0 -32.0		
5	Radiation harassment	Input: 115V/230VAC Output: 100%Io Environment temperature: 25°C	CISPR32/EN55032 CLASS	S A PASS		



4.4.4. EMS(EFT: ±4KV, Surge: line to line ±2KV)及 EMI(Class B)

The solution can meet the conventional performance in our datasheet, and meet EMS (EFT: ± 4 KV, Surge: line to line ± 2 KV) and EMI (Class B)

1) Designed peripheral circuits, PCB layout and recommended materials are as follows:

Recommended circuit	PCB design(L*W*H: 62.0mm*30.0mm*21.05mm)
---------------------	--

Note: Three PCB layouts are recommended for this solution. The first is to meet the occasions with strict requirements for height, the second is for occasions with requirements for product length and width, and the third is for occasions with strict requirements for width.

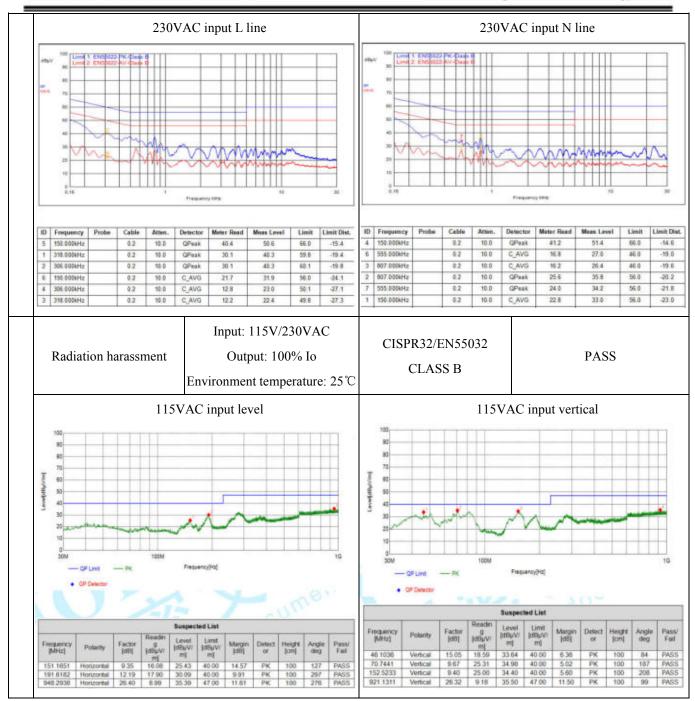
2) **BOM**:

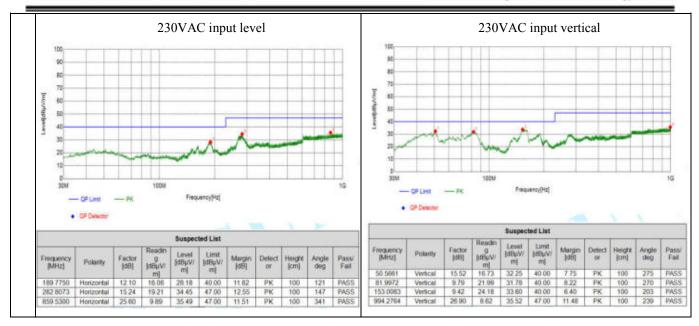
PCB position	Туре		Recommended material combination 1		Recommended material combination 2		Recommended material combination 3	
			Brand	P/N	Brand	P/N	Brand	P/N

FUSE	FUSE	2A/300VAC	Better	9321200301	Conquer	MST-2A-300V	Littelfuse	36912000000
MOV	VARISTOR	S14K350	DNR	DNR S14K350	Thinking	TVR14561	YAGEO	681KD14
R1	Wire-wound Resistor	6.8Ω/3W	PAK HENG	NKN03BJ6R 8	Yageo	NKN3WSFR-73 -6R8	Vishay	AC03000006808J AC00
CX	Class-X Capacitor	104K/310VA C	Faratronic	C42Q2104K 4SA405	НЈС	MKP-104K0305 AT1108-PV	TDK	B32912A3104K
LDM	Input inductor	2.2mH/0.24A	Hua Chen	HCRC0312T -2ROM	Wurth	7447720222	Bourns	RLB1014-222KL- ND
C1	Input filter capacitor	22uF/450V	SAMXON	ERD226M2 WI20RR4RF	Rubycon	450BXW22MEF R18X16	Rubycon	450BXW22MEFR 12.5X20
CY1	Class-Y Capacitor	1nF/ 400VAC	Wmec	HJE102MA4 DW-400V-F6	Walsin	YU1AH102M07 0BASDAH	TDK	CD45-E2GA102M -NKA
C2	Output filter capacitor	270uF/16V	SAMXON	UER277M1 CE08TUXO	ELITE	UPE1C271MNN 6308	Nichicon	PLS1C271MDO1
L1	Output inductor	2.2uH/6.5A	Sunlord	SWPA4030S 2R2NT	CHILISI N	AMQU0006063 02R2MA1	Bourns	SRP5030C-2R2M
С3	Output filter capacitor	150uF/35V	SAMXON	ESK157M1J F20TCSHP	Rubycon	35YXG150MEF C8X11.5	Rubycon	35YXG150MEFC8 X11.5

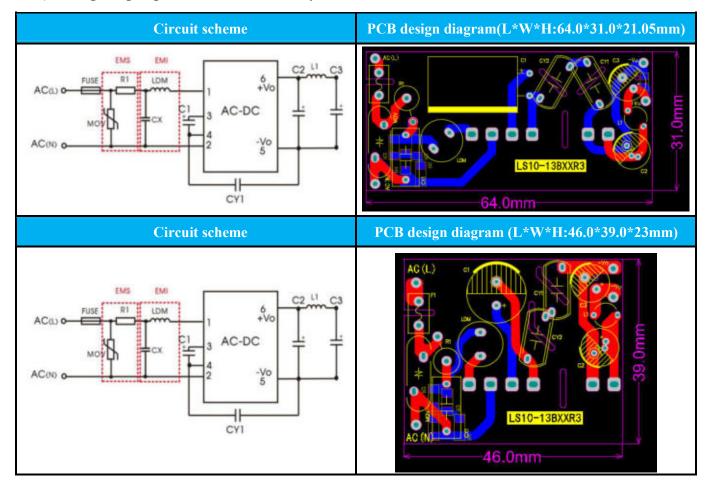
3) Test report:

	Routine performance test (test model: LS10-13B12R3)						
NO.	Test items	Test condition Spec.		Result			
1	No-load power consumption	Input: 230VAC Output: No load ≤0.15W Ambient temperature: 25°C		0.135W			
2	Output voltage accuracy	Input: 85 to 305VAC Output: 10%Io to 100%Io Ambient temperature: 25°C ±5%		-1.67%			
3	Voltage regulation rate	Input: 85 to 305VAC Output: 100%Io Ambient temperature: 25°C	±1.5%	0.08%			
4	Load Regulation Input: 85 to 305V Output: 10%Io to 10		±3%	1.52%			

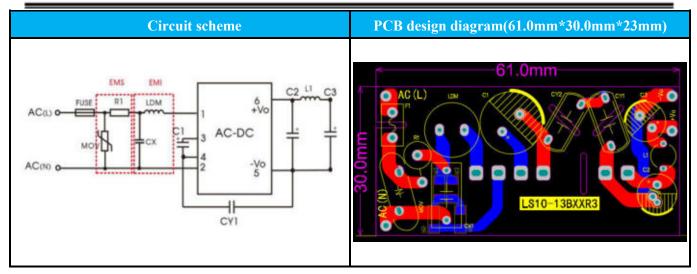

		A 1: 44					
		Ambient temperature: 25 ℃					
		Input: 230VAC					
5	Efficient	Output: 100%Io	79%	80.34%			
		Ambient temperature: 25℃					
		Input: 85 to 305VAC					
	Ripple noise	Output: 10%Io to 100%Io	150mV	68.6mV			
		Ambient temperature: 25°C					
	Low frequency ripple:		High frequency ripple:				
	LIFE STATE AND COLUMN TO SERVICE		E 17 Que and 17 p. or one 1				
	5 i i i i i i i i i i i i i i i i i i i	Accept to the period of the control		Acres Associate do de-			
6	16		100 100 100				
	The state of the s	And dealth and enhancement has been					
	±=	·	<u>+-</u>				
		A COLOR I . Mark . We show .	■ 100 mg 1 . Note: 10 Note: 1				
	0 16 to 5 c 0 0	<u> </u>	a 16 % c a a	₩			
	1						
		Protection test (test r	nodel: LS10-13B12R3)				
NO.	Test items	Test condition	Spec.	Result			
	Over-current protection	Input: 85VAC		132%/ 85VAC			
		Input: 230VAC		131%/ 230VAC			
1		Input: 305VAC	≥110%Io	138%/300VAC			
		Ambient temperature: 25°C		Protection mode: output			
		Ambient temperature. 23 C		hiccup, self-recovery			
		Input: 85VAC		No damage after one hour			
2	Short circuit protection	Input: 230VAC	Can be short-circuited for a	short circuit.			
		Input: 305VAC	long time	Protection mode: output			
		Ambient temperature: 25 ℃		hiccup, self-recovery			
	Safety test (test model: LS10-13B12R3)						
NO.	Test items	Test condition	Spec.	Result			
		Input to output: test time 1		2 (777.1.2. :			
1	Isolation withstand	minute, leakage current	≥3.6KVAC	3.6KVAC ok.			
		•	1	Leakage current: 0.812mA			
	voltage	<5mA		Leakage current: 0.812mA			



2	Insulation resistance	Input to output: 500VDC	>100MΩ	OK						
	EMC test (test model: LS10-13B12R3)									
NO	Test items	Test condition	Spec.	Result						
1	surge	Input: 230VAC Output: 100%Io Ambient temperature: 25°C	IEC/EN61000-4-5 line to line ±2KV	PASS						
2	EFT	Input: 230VAC Output: 100%Io Ambient temperature: 25°C	IEC/EN61000-4-4 ±4KV	PASS						
3	ESD	Input: 230VAC Output: 100%Io Ambient temperature: 25°C	IEC/EN61000-4-2 Contact ±6KV	PASS						
4	CE	Input: 115V/230VAC Output: 100%Io Ambient temperature: 25°C	CISPR32/EN55032 CLASS B	PASS						
	115V	AC input L line	115VA	AC input N line						
	### 100 Limit 1 ENGISTZ PN/ Elsis 8 1 1 1 1 1 1 1 1 1	Precising life	### 100 Line 2 Ench (122 Av. Chart II) ### 10	20 20						
			Principancy Mrts							
	2 483.000kHz 0.2 10.0 1	Appeal Meter Read Meas Level Umit Umit Umit Oist. QPeak 27.6 37.8 56.3 -18.5 AVG 16.6 26.8 46.0 -19.2 QPeak 25.6 35.8 56.0 -29.2	1 150:000kHz 0.2 10.0 GF 4 726:000kHz 0.2 10.0 C_	Rector Meter Read Meas Level Limit Dist. Peak 34.6 44.8 66.0 -21.2 ANG 14.3 24.5 46.9 -21.5 Peak 23.9 34.1 56.0 -21.9						
	5 150.000kHz 0.2 10.0	Peak 348 45.0 66.0 21.0 Peak 34.8 45.0 66.0 21.0 C_AVG 20.2 30.4 55.8 25.5	2 153 000kHz 0.2 10.0 C_	Peak 218 32-0 55-0 24-0 AVG 21.1 21.3 55.8 24.5 AVG 11.1 21.3 46.0 -24.7						



4.4.5. EMS (EFT: ±4KV, Surge: line to line ±2KV) and EMI (Class B) meets EN60335 standard


The solution can meet the conventional performance in our data sheet, and meet EMS (EFT: ± 4 KV, Surge: line to line ± 2 KV) and EMI (Class B).

1) Designed peripheral circuits, PCB layout and recommended materials are as follows:

Note: Three PCB layouts are recommended for this solution. The first is to meet the occasions with strict requirements for height, the second is for occasions with requirements for product length and width, and the third is for occasions with strict requirements for width.

2) **BOM**:

PCB position	Туре	Spec	Recommended material combination 1		Recommended material combination 2		Recommended material combination 3	
			Brand	P/N	Brand	P/N	Brand	P/N
CY1/CY2	Y2Capacit	1nF/	wmec	HME102	Walsin	YU1AC10	TDK	CS80-E2G
	or	250VAC		M		2M060		A102MY

Note: The two Y-capacitor solutions are different from the single Y-capacitor solution in Section 4.4.4, except that the Y capacitor material and PCB pitch are different, and the test results are not different from the single Y capacitor solution. Therefore, in addition to Y capacitors, please refer to section 4.4.4 for other device parameters and related test content in the recommended material list.

2) Test report

The two Y-capacitor solutions are different from the single Y-capacitor solution in Section 4.4.4. Only the Y-capacitor material and PCB pitch are different, and the test results are not much different from the single Y-capacitor solution. Therefore, please refer to the test report in Section 4.4.4 for the actual measured data.

5. Version and update record

Version	change content	Date
V0	First issue	2021.10
V1	Second issue	2023.07