TD_CAN Transceiver Modules' Application Guide 2022

1. CAN bus basic knowledge	2
1.1 CAN basic characteristics	2
1.2 CAN bus topology	.3
1.3 CAN bus transmission distance	. 3
1.4 Number of nodes supported by CAN bus	. 4
1.5 Matching resistance of CAN bus terminal match resistance	5
1.6 Factors affecting communication quality in practical wiring	5
2. Precautions for hardware interface design	.6
2.1 Isolation design of CANH and CANL bus ports	. 6
2.2 Protection of CAN bus port	. 6
2.3 Connection of bus reference ground	. 7
3. FAQs and solutions	. 8
4. Recommendation of TD/TLA_CAN model selection	. 9

1. CAN bus basic knowledge

1.1 CAN basic characteristics

CAN is short for Controller Area Network. It's a kind of ISO International Standardized asynchronous Serial Communication Protocol. Compared with general communication bus, CAN bus data communication is with outstanding reliability, real-time and flexibility. CAN bus standard includes physical layer and data link layer. With the development of CAN, the design of application layer will also be taken into consideration.

(1) CANH and CANL are with low internal capacitance value: Cin \leqslant 20pF/1Mbps

(2) Differential internal capacitance value: Cdiff≤10pF/1Mbps

(3) CANH and CANL are with low internal resistance value: 5K $\Omega \leq \text{Rdiff} \leq 50$ K Ω . The internal resistance of each node should keep as same as each other and their error should be controlled within 5%.

(4) Differential internal resistance value: $10K \Omega \leq \text{Rdiff} \leq 100K \Omega$. The internal resistance of each node should keep as same as each other and their error should be controlled within 5%.

(5) When configured two 120Ω termination resistors to 110 nodes (including master controller device and controlled setting), the drive can output at least 1.5V (the value of the terminal resistance is related to the parameters of the twisted pair used).

1.2 CAN bus topology

1.3 CAN bus transmission distance

In order to avoid cable radiation, line layout of the CAN bus network should be as close as possible to linear structure. It is necessary to connect a short stub cable to the trunk cable in practical application. As shown in Fig.2, in order to minimize standing wave, the spacing between nodes on the network should not be the same, and the length of the cable is equal as well. Please refer to parameters shown in Table 1.

Fig.2 Wiring network layout (L: Bus length; a: Extension length; d: Node spacing)

Parameters	Sign	Unit	Minimum	Typical	Maximum	Condition
			value	value	value	

Table.1 Network topology parameters

广州金升田科技有限公司 MORNSUN Guangzhou Science & Technology Co., Ltd.

Bus length	L	m	0	/	40	
Extension length	a	m	0	/	0.3	1Mbit/s
Node spacing	d	m	0.1	/	40	

Fig.3 Transmission rate to bus length table

1.4 Number of nodes supported by CAN bus

Fig.4 CAN bus equivalent impedance diagram

 $\frac{R_{T}.\min \times Rdiff.\min}{n_{\max} \times R_{T}.\min + 2Rdiff.\min} > R_{L}.\min$

Rearranged to nmax: $n_{\max} < \text{Rdiff} . \min \times (\frac{1}{R_{L}.\min} - \frac{2}{R_{T}.\min})$

Transceiver	R _{Diff.min} (kΩ)	V _{CC.min} (V)	R _{L.min} (Ω)	Number of Nodes (R _{T.min} =118 Ω)	Number of Nodes (R _{T.min} =130 Ω)
TJA1050	25	4.75	45	131	170
		4.9	39	217	256
PCA82C250	20	4.9	45	105	136

1.5 Matching resistance of CAN bus terminal match resistance

According to ISO11898-2, CAN bus transmission medium must meet the specifications in Table 2 & 3.

Parameters	Sign	Units	Minimum value	Typical value	Maximum value	Condition
Impedance	z	Ω	95	120	140	Between CANH & CANL
Bus electrical resistivity	R	mΩ/m		70		\checkmark
transport delay		ns/m		5		

Table.2 Transfer twisted pair parameters (shielded or unshielded)

Table.3 Recommended parameters for different transmission cables

	(Cable	Terminal	Maximum baud rate	
Bus length	DC resistance	Cable sectional area	resistance		
0—40m	70mΩ/m	0.25mm2~0.34mm2 AWG23, AWG22	124Ω/1%	1Mbps at 40m	
40m-300m	<60mΩ/m	0.34mm2~0.6mm2 AWG22, AWG20	127Ω/1% 2*)	>500Kbps at 100m	
300m-600m	<40mΩ/m	0.5mm2~0.6mm2 AWG20	127Ω/1% 2*)	>100Kbps at 500m	
600m-1km	<20mΩ/m	0.75mm2~0.8mm2 AWG18	127Ω/1% 2*)	>50Kbps at 1km	

(1) Recommended values for cable AC parameters: 120Ω characteristic resistance, 5ns / m delay.

(2) In order to minimize the voltage attenuation caused by the DC resistance of the cable, matching a larger terminal resistance value would help to increase the bus length (e.g., use non-standard 150 Ω ~ 300 Ω whilst the reference value "118 Ω <RL <130 Ω " by ISO11898 standard).

1.6 Factors affecting communication quality in practical wiring

① The shorter the communication distance, the better the communication quality is. If

communication distance is beyond 500 meters, it is recommended to add a repeater.

② The fewer the communication nodes, the better the communication quality is. If the number of

MORNSUN®

nodes is more than 110, it is recommended to add a repeater.

③ The lower the communication baud rate, the better the communication quality is. In cases where application requirements are met, select the lower communication baud rate as much as possible. It is recommended to select between 10K-250Kbps.

④ The smaller the equivalent capacitance of the protection device between A and B ports, the less it affects communication. Thus, it is necessary to consider the equivalent capacitance when selecting protection device of ports (TVS tubes, varistors, etc.)

(5) Branches of each communication node must be as short as possible to reduce the impact of signal reflection of the branches to the bus.

 $_{\odot}$ Appropriate terminal resistor can effectively reduce signal reflection. It is generally recommended to connect 120 Ω resistors.

⑦ Using the shielded twisted-pair, connect all communication node reference ground through the shield and ground at one point. This will reduce interference, as well as improve communication quality.

2. Precautions for hardware interface design

2.1 Isolation design of CANH and CANL bus ports

CAN bus nodes are generally networked in daisy-chained or bus-topology. Once a failure occurs in the interface chip of a node, it may affect the quality of the entire network communication. Therefore CANH, CANL and bus should be isolated. When short circuit or power breakdown of CANH / CANL occurs on a node interface chip, potential barrier will form between the bus and the nodes, thereby reducing the impact on the bus.

2.2 Protection of CAN bus port

CAN bus communication is generally used in long distance transmission. Therefore the designer has to consider CANH/ CANL bus port lightning protection design. Common lightning protection design circuit is as shown in fig.5. Refer to the datasheet of TD_CAN series for the relevant parameters of the device. TD_CAN series module internal CANH / CANL line comes with built-in ESD protection function, so generally users no longer need external ESD

protection devices.

Fig.5 Port protection recommended circuit

2.3 Connection of bus reference ground

The CAN bus uses a differential mode to transmit the signal. It seems to no need a relative reference point to distinguish the signal and the system only needs to detect the potential difference between the two lines. But the designer should also consider the common-mode withstand voltage range of the CAN interface module. Only to meet this condition will the entire network work properly. When the common-mode voltage in the network line exceeds this range, it will affect the stability and reliability of communication, and even damage the interface. Using isolation technology can effectively solve the problem of common mode noise. So using TD_CAN isolated transceiver to build bus hardware port can isolate ground loops on each node on the bus and reduce the ground loop current between nodes, thereby reducing common mode interference. But for the serious interference and harsh electrical environment, it recommends designers to use shielded twisted pair. The bus reference ground of each communication node on the bus is connected through the shield to reduce common mode and radiation interference and to improve system reliability (as shown in fig.6).

3. FAQs and solutions

Table.4 FAQs and solutions

Failure	Dashahlara	Calutana		
Phenomenon	Probable causes			
	H and L polarity reversed	Change H and L polarity		
	inconsistent baud rate of each node	to be consistent		
		Re-set the CAN controller to		
	incorrectly set CAN controller	ensure the same parameters of		
		the bus nodes in the design 🕥 🏹		
		elect the compatible module		
		according to the power supply of		
Unable to	Wrong selection of the modules (e.g. 3Vdc input products and 5Vdc input	the SCM (e.g. select TD3xx series if		
Communicate	products are incompatible)	3.3V power supply needed, select		
		TD5xx series if 5V power supply		
		needed)		
	Unconformity baud rates of	Adjust and conform the baud rate		
	transmitter and receiver	of transmitter and transceiver		
		1) Increase the baud rate;		
	CAN bus protection timeout	2) Use a transceiver module with		
		lice a crystal escillator with a		
	inaccurate baud rate timer clock	suitable frequency (e.g. 16M)		
	Unexpected high communication baud rate	Reduce communication baud rate		
	non-matched terminal matching	Select the appropriate terminal		
	resistance	matching resistor		
	Too large parasitic capacitor from	Use the devices with smaller		
High error rate	peripheral devices	parasitic capacitor		
	Without CAN message modulation	Use a SCM with CAN controller		
	Too many communication nodes	Add CAN repeater		
	Communication distance too far	Add CAN repeater		
	Short waiting time between the bus	Increase the waiting time between		
	reception and transmission status	two states		
	Too strong external environment interference	Use a shielded transmission cable		

4. Recommendation of TD/TLA_CAN model selection

Table.5 Product selection

Channala	Fastures	Dort No	Vin	Transmission	Node	Isolation	nata	
Channels	reatures	Part NO.	(VDC)	rate(bps)	S	(VDC)	note	
		TD301DCAN	3.3	5K-1Mbps	110	3KV		
		TD501DCAN	5.0	5K-1Mbps	110	3KV	פסוח	
		TDH301DCAN	3.3	5K-1Mbps	110	5kVAC	DIPO	
		TDH501DCAN	5.0	5K-1Mbps	110	5kVAC		
	Universal	TD321DCAN	3.3	5K-1Mbps	110	3KV	Open-	
		TD521DCAN	5.0	5K-1Mbps	110	3KV	frame	
		TD321SCAN	3.3	5K-1Mbps	110	3KV	Open-	
							frame	
		TD521SCAN	5.0	5K-1Mbps	110	3KV	SMD	
	Low	TD301DCANH-W	3.3	40K-1Mbps	110	3KV		
	consumptio						DIP8	
	n	TD501DCANH-W	5.0	40K-1Mbps	110	3KV		
	Enhanced	TD301DCANH3	3.3	40K-1Mbps	110	2.5KV	פפוח	
		TD501DCANH3	5.0	40K-1Mbps	110	2.5KV		
		TD321DCANH	3.3	40K-1Mbps	110	3KV	Open-	
		TD521DCANH	5.0	40K-1Mbps	110	3KV	frame	
		TD521SCANH	3.3	40K-1Mbps	110	3KV	Open-	
				-			frame	
Singlo		TD521SCANH	5.0	40K-1Mbps	110	3KV	SMD	
JIIIgie		TD331SCANH	3.3	40k-1M	110	2.5KV	SMD12	
		TD531SCANH	5	40k-1M	110	2.5KV		
	Surge	TD301DCANHE	3.3	20K-1Mbps	110	2.5KV		
	protected	TD501DCANHE	5.0	20K-1Mbps	110	2.5KV	DIIO	
	Compact	TD301MCAN	3.3	40K-1Mbps	110	2.5KV	פפוח	
	size	TD501MCAN	5.0	40K-1Mbps	110	2.5KV	DIIO	
			3.3-5/				DEN16	
		TD041SCANFD	5	40K-1Mbps	110	3750VAC	DINIO	
		TD541SCANFD	5.0	40K-1Mbps	110	3000VDC	DFN20	
		TDH541SCANFD	5.0	40K-1Mbps	110	5000VDC	DFN20	
	IC Package	TDA51SCANHC	5.0	40K-1Mbps	110	5000Vrms	SOIC16	
		TD301MCANFD	3.3	40K-5Mbps	110	2.5KV	פפוח	
		TD501MCANFD	5.0	40K-5Mbps	110	2.5KV	DIIO	
		TD331SCANFD	3.3	40K-5Mbps	110	2.5KV	SMD12	
		TD531SCANFD	5.0	40K-5Mbps	110	2.5KV	5101012	
			3.3-5/					
		TD041SCANFD	5	40K-5Mbps	110	3750VAC		
		TD541SCANFD	5.0	40K-5Mbps	110	3000VDC	DFN20	
		TDH541SCANFD	5.0	40K-5Mbps	110	5000VDC	DFN20	

MORNSUN®

广州金升田科技有限公司 MORNSUN Guangzhou Science & Technology Co., Ltd.

	Automotivo	CTD331SCANH	3.3	40k-1M	110	2.5KV	
	Automotive	CTD531SCANH	5	40k-1M	110	2.5KV	
	Protocol	TD3USPCAN	3.3	5k-1M	110	3.0KV	<u>م</u> دمانط
	Conversion	TD5USPCAN	5	5k-1M	110	3.0KV	DIP24
							3.3VD
							С
	ACDC power	TLA03-03KCAN	115V	5k-1M	110	4000VAC	output
supply	supply						5.0VD
	integrated		AC				С
	CAN bus	TLA05-03KCAN	/277V	5k-1M	110	4000VAC	output
			, ·				12VDC
		TLA12-03KCAN	AC	5k-1M	110	4000VAC	output
	Two-port	TD302DCAN	3.3	5K-1Mbps	110	2.5KV	(\mathcal{R})
	isolation	TD502DCAN	5.0	5K-1Mbps	110	2.5KV	
Duplex	Two-port	TD322DCAN	3.3	40K-1Mbps	110	3KV	
	isolation;						DIP12
	channel						
	isolation	TD522DCAN	5.0	40K-1Mbps	110	3KV	